設(shè)函數(shù)f(x)=x3-6x+5,x∈R.
(1)若關(guān)于X的方程f(x)=a有三個(gè)不同的實(shí)根,求實(shí)數(shù)a=的取值范圍;
(2)當(dāng)x∈(1,+∞)時(shí),f(x)≥k(x-1)恒成立.求實(shí)數(shù)k的取值范圍.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,函數(shù)的零點(diǎn)與方程根的關(guān)系,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,求出函數(shù)f(x)的極大值為5+4
2
,極小值為5-4
2
,利用關(guān)于X的方程f(x)=a有三個(gè)不同的實(shí)根,即可求實(shí)數(shù)a的取值范圍;
(2)因?yàn)閤∈(1,+∞),所以f(x)≥k(x-1)恒成立可轉(zhuǎn)化為k≤
x3-6x+5
x-1
恒成立,再化簡k≤
x3-6x+5
x-1
,求最小值即可.
解答: 解:(1)f′(x)=3x2-6=0⇒x=±
2

x(-∞,-
2
)
-
2
(-
2
,
2
)
2
(
2
,+∞)
f'(x)+-+
5+4
2
5-4
2
所以函數(shù)f(x)的極大值為5+4
2
,極小值為5-4
2
,
∵關(guān)于x的方程f(x)=a有三個(gè)不同的實(shí)根,
5-4
2
<a<5+4
2
;(6分)
(2)x∈(1,+∞)時(shí),f(x)≥k(x-1)恒成立,也就是k≤
x3-6x+5
x-1
恒成立,
令g(x)=
x3-6x+5
x-1
,則g(x)=x2+x-5,
∴g(x)的最小值為-3,
∴k≤-3.(12分)
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間,極值,以及函數(shù)的極值的應(yīng)用,綜合性強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinxcosx=
3
8
且x∈(
π
4
,
π
2
),則sinx-cosx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市舉辦歌唱比賽,邀請了A、B、C、D四位資深音樂人擔(dān)任評委,按照節(jié)目程序,每一位選手取得決賽資格后可通過抽簽的方式選擇一位評委作為導(dǎo)師,且他們對導(dǎo)師的選擇是相互獨(dú)立的,某組共有甲、乙、丙、丁四位選手取得了決賽資格,獲得了選擇導(dǎo)師的機(jī)會(huì).
(Ⅰ)求甲、乙、丙三人都選擇A為導(dǎo)師的概率;
(Ⅱ)求四位選手至少有一人選擇B作為導(dǎo)師的概率;
(Ⅲ)設(shè)四位選手選擇C為導(dǎo)師的人數(shù)ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a},全集為實(shí)數(shù)集R.
(1)求A∪B,(∁RA)∩B;
(2)如果A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知log189=a,18b=5,試用a、b表示log1845的值;
(Ⅱ)已知log147=a,log145=b,用a、b表示log3528.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,∠ABC=90°,M、N分別為BB1、A1C1的中點(diǎn).
(1)求證:AB⊥CB1
(2)求證:MN∥平面ABC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)x2-(a+1)x+a<0(其中a≠1);
(2)
2
x-1
>x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4sin(
π
2
+
x
2
)cos(
x
2
+
π
6
).
(Ⅰ)求函數(shù)f(x)的最小正周期和圖象對稱中心的坐標(biāo);
(Ⅱ)在△ABC中,設(shè)內(nèi)角A,B,C的對邊分別是a,b,c,如果c=1,f(C)=
3
+1,且△ABC的面積為
3
2
,求sinA+sinB+sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某三棱錐的三視圖如圖所示,則該三棱錐的體積是
 

查看答案和解析>>

同步練習(xí)冊答案