【題目】如圖所示,AB是⊙O的直徑,VA 垂直于⊙O所在的平面,點(diǎn)C是圓周上不同于A,B的任意一點(diǎn),M,N分別為VA,VC的中點(diǎn),則下列結(jié)論正確的是(  )

A. MNAB B. MNBC所成的角為45°

C. OC⊥平面VAC D. 平面VAC⊥平面VBC

【答案】D

【解析】

分析:利用空間中線線、線面、面面間的位置關(guān)系進(jìn)行判斷.

詳解:對(duì)于A項(xiàng),MNAB異面,故A項(xiàng)錯(cuò);對(duì)于B項(xiàng),

可證BC⊥平面VAC,故BCMN,所以所成的角為90°,因此B項(xiàng)錯(cuò);對(duì)于C項(xiàng),OCAC不垂直,所以OC不可能垂直平面VAC,故C項(xiàng)錯(cuò);對(duì)于D項(xiàng),由于BCAC,VA⊥平面ABC,BC平面ABC,所以VABC,因?yàn)?/span>ACVAA,所以BC⊥平面VACBC平面VBC,所以平面VAC⊥平面VBC,故D項(xiàng)正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)若對(duì)任意的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若的最大值是,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線過(guò)點(diǎn)且與直線平行,直線過(guò)點(diǎn)且與直線垂直.

Ⅰ)求直線,的方程.

若圓,同時(shí)相切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點(diǎn)處的切線方程;

(Ⅱ)若上恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若數(shù)列的前項(xiàng)和, ,求證:數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)M(x1 , f(x1))和點(diǎn)N(x2 , g(x2))分別是函數(shù)f(x)=ex x2和g(x)=x﹣1圖象上的點(diǎn),且x1≥0,x2>0,若直線MN∥x軸,則M,N兩點(diǎn)間的距離的最小值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的圖象大致為(  )

A. B.

C. D.

【答案】C

【解析】

由函數(shù)的解析式 ,當(dāng)時(shí),是函數(shù)的一個(gè)零點(diǎn),屬于排除A,B,

當(dāng)x∈(0,1)時(shí),cosx>0,,函數(shù)f(x) <0,函數(shù)的圖象在x軸下方,排除D.

本題選擇C選項(xiàng).

點(diǎn)睛:函數(shù)圖象的識(shí)辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì).(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性.(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.利用上述方法排除、篩選選項(xiàng).

型】單選題
結(jié)束】
12

【題目】設(shè),則的最小值是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)校總務(wù)辦公室用1000萬(wàn)元從政府購(gòu)得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高0.02萬(wàn)元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為0.8萬(wàn)元.

(1)若學(xué)生宿舍建筑為層樓時(shí),該樓房綜合費(fèi)用為萬(wàn)元,綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和),寫(xiě)出的表達(dá)式;

(2)為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬(wàn)元?

【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時(shí)平均綜合費(fèi)用為每平方米萬(wàn)元

【解析】

由已知求出第層樓房每平方米建筑費(fèi)用為萬(wàn)元,得到第層樓房建筑費(fèi)用,由樓房每升高一層,整層樓建筑費(fèi)用提高萬(wàn)元,然后利用等差數(shù)列前項(xiàng)和求建筑層樓時(shí)的綜合費(fèi)用;

設(shè)樓房每平方米的平均綜合費(fèi)用為,則,然后利用基本不等式求最值.

解:由建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬(wàn)元,

且樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬(wàn)元,

可得建筑第1層樓房每平方米建筑費(fèi)用為:萬(wàn)元.

建筑第1層樓房建筑費(fèi)用為:萬(wàn)元

樓房每升高一層,整層樓建筑費(fèi)用提高:萬(wàn)元

建筑第x層樓時(shí),該樓房綜合費(fèi)用為:

;

設(shè)該樓房每平方米的平均綜合費(fèi)用為

則:,

當(dāng)且僅當(dāng),即時(shí),上式等號(hào)成立.

學(xué)校應(yīng)把樓層建成10層,此時(shí)平均綜合費(fèi)用為每平方米萬(wàn)元.

【點(diǎn)睛】

本題考查簡(jiǎn)單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項(xiàng)和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.

型】解答
結(jié)束】
20

【題目】已知

(1)求函數(shù)的最小正周期和對(duì)稱軸方程;

(2)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+aln(x+1)(a為常數(shù))
(Ⅰ)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案