已知函數(shù),,其中為常數(shù), ,函數(shù)的圖象與坐標(biāo)軸交點(diǎn)處的切線為,函數(shù)的圖象與直線交點(diǎn)處的切線為,且。
(Ⅰ)若對任意的,不等式成立,求實(shí)數(shù)的取值范圍.
(Ⅱ)對于函數(shù)和公共定義域內(nèi)的任意實(shí)數(shù)。我們把 的值稱為兩函數(shù)在處的偏差。求證:函數(shù)和在其公共定義域的所有偏差都大于2.
(Ⅰ);(Ⅱ)詳見解析.
【解析】
試題分析:(Ⅰ)利用參數(shù)分離法將不等式問題轉(zhuǎn)化為,等價(jià)轉(zhuǎn)化為處理,于是問題的核心就是求函數(shù),利用導(dǎo)數(shù)求解,但同時(shí)需要注意題中的隱含條件將的值確定下來;(Ⅱ)先確定函數(shù)與函數(shù)的解析式,然后引入函數(shù),通過證明,進(jìn)而得到
,得到,于是就說明原結(jié)論成立.
試題解析:解(Ⅰ)函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)為,
又
函數(shù)的圖象與直線的交點(diǎn)為,
又
由題意可知,
又,所以 3分
不等式可化為
即
令,則,
又時(shí),,,
故,在上是減函數(shù)
即在上是減函數(shù)
因此,在對任意的,不等式成立,
只需
所以實(shí)數(shù)的取值范圍是 8分
(Ⅱ)證明:和的公共定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013091600094745555579/SYS201309160010517395685790_DA.files/image036.png">,由(Ⅰ)可知,
令,則,
在上是增函數(shù)
故,即 ①
令,則,
當(dāng)時(shí),;當(dāng)時(shí),,
有最大值,因此 ②
由①②得,即
又由①得
由②得
故函數(shù)和在其公共定義域的所有偏差都大于2 13分
考點(diǎn):函數(shù)圖象的切線方程、參數(shù)分離法、函數(shù)不等式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 | a-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
kπ | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
f(x1)-f(x2) | x1-x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年東城區(qū)二模理)(14分)
已知函數(shù)=(其中為常數(shù),).利用函數(shù)構(gòu)造一個(gè)數(shù)列,方法如下:
對于給定的定義域中的,令,,…,,…
在上述構(gòu)造過程中,如果(=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過程繼續(xù)下去;如果不在定義域中,那么構(gòu)造數(shù)列的過程就停止.
(Ⅰ)當(dāng)且時(shí),求數(shù)列的通項(xiàng)公式;
(Ⅱ)如果可以用上述方法構(gòu)造出一個(gè)常數(shù)列,求的取值范圍;
(Ⅲ)是否存在實(shí)數(shù),使得取定義域中的任一實(shí)數(shù)值作為,都可用上述方法構(gòu)造出一個(gè)無窮數(shù)列 ?若存在,求出的值;若不存在,請說明理由.查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com