年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G: (c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.
(1) 若橢圓C經(jīng)過兩點(diǎn),求橢圓C的方程;
(2) 當(dāng)c為定值時(shí),求證:直線MN經(jīng)過一定點(diǎn)E,并求的值(O是坐標(biāo)原點(diǎn));
(3) 若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)同時(shí)滿足條件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是與n無關(guān)的常數(shù))的無窮數(shù)列{bn}叫“特界” 數(shù)列.
(1) 若數(shù)列{an}為等差數(shù)列,Sn是其前n項(xiàng)和,a3=4,S3=18,求Sn;
(2) 判斷(1)中的數(shù)列{Sn}是否為“特界” 數(shù)列,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(1) 若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(2) 對任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f(n)=.
(1) 當(dāng)n=1,2,3時(shí),分別比較f(n)與g(n)的大小(直接給出結(jié)論);
(2) 由(1)猜想f(n)與g(n)的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線>,弦AB過焦點(diǎn),△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
過點(diǎn)P(1,1)的直線,將圓形區(qū)域{(x,y)|x2+y2≤4}分兩部分,使得這兩部分的面積之差最大,則該直線的方程為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com