設橢圓的離心率,是其左右焦點,點是直線(其中)上一點,且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點,滿足,求(為坐標原點)面積的最小值.
科目:高中數(shù)學 來源: 題型:解答題
知橢圓的左右焦點為F1,F(xiàn)2,離心率為,以線段F1 F2為直徑的圓的面積為, (1)求橢圓的方程;(2) 設直線l過橢圓的右焦點F2(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
極坐標系中橢圓C的方程為
以極點為原點,極軸為軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(Ⅰ)求該橢圓的直角標方程;若橢圓上任一點坐標為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點,且直線與的傾斜角互補,
求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線的焦點為,點是拋物線上的一點,且其縱坐標為4,.
(Ⅰ)求拋物線的方程;
(Ⅱ) 設點是拋物線上的兩點,的角平分線與軸垂直,求的面積最大時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知橢圓:的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且.
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點為圓心的圓與直線相切,圓:.過點作互相垂直且分別與圓、圓相交的直線和,設被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的焦點在軸上,離心率,且經(jīng)過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)斜率為的直線與橢圓相交于兩點,求證:直線與的傾斜角互補.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點P為焦點F1關(guān)于直線的對稱點,動點M滿足. 問是否存在一個定點T,使得動點M到定點T的距離為定值?若存在,求出定點T的坐標及此定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知橢圓的中心在原點,焦點在軸上,短軸長為,離心率為.
(I)求橢圓的方程;
(II) 為橢圓上滿足的面積為的任意兩點,為線段的中點,射線交橢圓與點,設,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com