函數(shù)f(x)=(
3
4
x的圖象可能是( 。
A、
B、
C、
D、
考點:指數(shù)函數(shù)的圖像與性質
專題:函數(shù)的性質及應用
分析:根據(jù)指數(shù)函數(shù)的性質,即可得到答案.
解答: 解:∵f(x)=ax,恒過定點(0,1),當a>1,時,函數(shù)單調(diào)遞增,當0<a<1,函數(shù)單調(diào)遞減,
∴f(x)=(
3
4
x單調(diào)遞減,過點(0,1).
∴只有C符合,
故選:C.
點評:本題主要考查了質數(shù)的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

不等式ax2-(a+1)x+1<0(0<a<1),則此不等式的解集為( 。
A、(1,
1
a
B、(
1
a
,1)
C、(1,+∞)
D、∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=log
1
2
(x2-ax+3a)在區(qū)間(2,+∞)上是減函數(shù),則實數(shù)a的取值范圍是(  )
A、(-∞,4]
B、(-∞,4)
C、(-4,4]
D、[-4,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+sinx,則f(x)導數(shù)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x∈R,x2-3x+8<0”的否定是( 。
A、?x∈R,x2-3x+8>0
B、?x∈R,x2-3x+8>0
C、?x∈R,x2-3x+8≥0
D、?x∈R,x2-3x+8≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,一艘海輪位于燈塔P的南偏東70°方向的M處,它以每小時40海里的速度向正北方向航行,2小時后到達位于燈塔P的北偏東40°的N處,則N處與燈塔P的距離為( 。
A、40海里B、60海里
C、70海里D、80海里

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用min{a,b}表示a,b兩個實數(shù)中的最小值.已知函數(shù)f(x)=min{|log3x|,|log3(x-t)|}(t>0),若函數(shù)g(x)=f(x)-1至少有3個零點,則t的取值范圍為( 。
A、(0,3)
B、(
1
3
,
8
3
C、(
8
3
,3)
D、[
8
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x∈R|x2≤4},B={x∈N|
x
≤3},則A∩B的非空子集的個數(shù)( 。
A、3B、4C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-ax2-3x.
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍.
(2)若x=-
1
3
是函數(shù)f(x)的極值點,求函數(shù)f(x)在[1,a]上的最大值.
(3)設函數(shù)g(x)=f(x)-bx,在(2)的條件下,若函數(shù)g(x)恰有3個零點,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案