(1)當(dāng)O′點(diǎn)運(yùn)動(dòng)時(shí),|MN|是否有變化?證明你的結(jié)論.
(2)求+的最大值,并求取得最大值時(shí)的θ值.
解:(1)當(dāng)O′點(diǎn)運(yùn)動(dòng)時(shí),|MN|為一定值.
設(shè)O′(x0,y0),則x20=2py0(y0≥0),
取線段MN中點(diǎn)B,則有O′B⊥MN,所以有:
|M′N|=2|MB|=
=
=
==2p.
(2)在△AMN中運(yùn)用余弦定理,得
|MN|2=|AM|2+|AN|2-2|AM||AN|cosθd21+d22-2d1d2cosθ=4p2, ①
再由三角形的面積公式,在△AMN中可得:
|AM||AN|sinθ=|MN||AO|d1d2sinθ=2p2. ②
由①、②可得:
+==
=2sinθ+2cosθ=2sin(θ+)≤2,
當(dāng)sin(θ+)=1時(shí),+取最大值2,
又0<θ<π,
所以取最大值時(shí)θ=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高二12月月考數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L⊥直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決下列問(wèn)題:
(1)若∠PAB=30°,求以MN為直徑的圓方程;
(2)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過(guò)圓O內(nèi)的一定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆江蘇省江陰市高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L⊥直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。
試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決下列問(wèn)題:
(1)若∠PAB=30°,求以MN為直徑的圓方程;
(2)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過(guò)圓O內(nèi)的一定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北衡水中學(xué)高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題12分)
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。
(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
(Ⅱ)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過(guò)圓O內(nèi)的一定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直于直線AB.點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L于M、N點(diǎn).
(1)若∠PAB=30°,求以MN為直徑的圓的方程;
(2)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過(guò)AB上一定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com