如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L⊥直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。
試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決下列問題:
(1)若∠PAB=30°,求以MN為直徑的圓方程;
(2)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過圓O內(nèi)的一定點(diǎn)。
(1);(2)詳見解析
【解析】
試題分析:(1)由已知得,又,則根據(jù)斜率的關(guān)系,且過點(diǎn)(2,0),可求,分別求直線與的交點(diǎn)的坐標(biāo),進(jìn)而可求以為直徑的圓的方程;(2)
設(shè),由直線和的方程,分別求與的交點(diǎn),得,利用勾股定理求以為直徑的圓截軸的弦長為,長度為定值,故圓過定點(diǎn).(1、該題還可以根據(jù)兩直線的垂直關(guān)系設(shè)直線方程,斜率分別為和,方法如上;2、對于探索型和開放型題目,大膽的猜想和必要的論證是解決問題非常好的方法).
試題解析:建立如圖所示的直角坐標(biāo)系,⊙O的方程為,直線L的方程為.
(1)∵∠PAB=30°,∴點(diǎn)P的坐標(biāo)為,∴,,將x=4代入,得,∴MN的中點(diǎn)坐標(biāo)為(4,0),MN=,∴以MN為直徑的圓的方程為,同理,當(dāng)點(diǎn)P在x軸下方時(shí),所求圓的方程仍是;
(2)設(shè)點(diǎn)P的坐標(biāo)為,∴(),∴,∵,將x=4代入,得,,∴,MN=,MN的中點(diǎn)坐標(biāo)為,
以MN為直徑的圓截x軸的線段長度為
為定值。∴⊙必過⊙O內(nèi)定點(diǎn).
考點(diǎn):1、直線和圓的方程;2、直線被圓所截的弦長計(jì)算方法;3、直線和圓的位置關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北衡水中學(xué)高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題12分)
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。
(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
(Ⅱ)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過圓O內(nèi)的一定點(diǎn)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com