分析:(Ⅰ)S
n=
(1-a
n),當(dāng)n≥2時(shí),S
n-1=
(1-a
n-1),兩式相減,得an=
-an+an-1,整理得出a
n=
a
n-1,判斷出數(shù)列{a
n}為等比數(shù)列,通項(xiàng)公式可求.
(Ⅱ)由S
n=
(1-a
n)得S
n=
[1-(
)n],易證S
n<;
(Ⅲ)根據(jù)對(duì)數(shù)的運(yùn)算法則,求得b
n=-n(1+n),
==
-,經(jīng)裂項(xiàng)后求和即可.
解答:(本小題滿分12分)
解:(Ⅰ)S
n=
(1-a
n)
當(dāng)n≥2時(shí),S
n-1=
(1-a
n-1),
兩式相減,得a
n=
-an+an-1,整理得出a
n=
a
n-1,
由S
1=
(1-a
1),得a
1=
------------------(2分)
∴數(shù)列{a
n}是首項(xiàng)a
1=
,公比為
的等比數(shù)列,
∴a
n=
×
n-1=(
)n,
---(4分)
(Ⅱ) 由S
n=
(1-a
n)得S
n=
[1-(
)n]
--(5分)
∵1-(
)n<1,
∴
[1-(
)n]
<,即S
n<;
-------------------------(8分)
(Ⅲ) 函數(shù)f(x)=log
2x,b
n=f(a
1)+f(a
2)+…+f(a
n)
=
++…+=
=log
2()1+2+…+n=-2(1+2+…+n)=-n(1+n)------------------(10分)
∵
==
-∴
+
+
+…+
=
(-1)+(-)+…+(-)=
-1=------(12分)
點(diǎn)評(píng):本題是函數(shù)與不等式,數(shù)列的綜合題.考查數(shù)列通項(xiàng)公式求解,對(duì)數(shù)的運(yùn)算法則,裂項(xiàng)法數(shù)列求和,三者有機(jī)結(jié)合.是好題.