在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若
cosA-2cosC
cosB
=
2c-a
b
,則
sinC
sinA
=(  )
A、
1
2
B、1
C、
3
2
D、2
考點(diǎn):正弦定理,余弦定理
專題:解三角形
分析:由條件利用正弦定理可得sinBcosA+cosBsinA=2(sinBcosC+cosBsinC),再利用誘導(dǎo)公式、兩角和的正弦公式求得
sinC
sinA
=的值.
解答: 解:在△ABC中,由
cosA-2cosC
cosB
=
2c-a
b
利用正弦定理可得
cosA-2cosC
cosB
=
2sinC-sinA
sinB

∴sinBcosA-2cosCsinB=2sinCcosB-sinAcosB,
∴sinBcosA+cosBsinA=2(sinBcosC+cosBsinC),
∴sin(B+A)=2sin(B+C),即 sinC=2sinA,則
sinC
sinA
=2,
故選:D.
點(diǎn)評(píng):本題主要考查正弦定理、誘導(dǎo)公式、兩角和的正弦公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若函數(shù)f(x)=asinx+cosx的一個(gè)對(duì)稱中心是(
π
6
,0),則a的值為-
3
;
②函數(shù)f(x)=cos(2x+
π
2
)在區(qū)間[0,
π
2
]上單調(diào)遞減;
③已知函數(shù)f(x)=2sin(2x+φ)(-π<φ<π),若f(
π
6
)≤f(x)對(duì)任意x∈R恒成立,則φ=-
6
;
④函數(shù)f(x)=tan|x|既是偶函數(shù)又是周期函數(shù);
⑤函數(shù)f(x)=sin(2x-
π
3
)+1的最小正周期為π.
其中所有正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一水渠的橫截面如圖所示,它的橫截面曲線是拋物線形,AB寬2m,渠OC深為1.5m,水面EF距AB為0.5m.
(1)求截面圖中水面寬度;
(2)如把此水渠改造成橫截面是等腰梯形,要求渠深不變,不準(zhǔn)往回填土,只準(zhǔn)挖土,試求截面梯形的下邊長(zhǎng)為多大時(shí),才能使所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=1,|
b
|=2,向量
a
b
的夾角為60°,則|
a+b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列說(shuō)法:
①不等于0的所有偶數(shù)可以組成一個(gè)集合;
②高一(1)班的所有高個(gè)子同學(xué)可以組成一個(gè)集合;
③{1,2,3,4}與{4,2,3,1}是不同的集合;
④實(shí)數(shù)中不是有理數(shù)的所有數(shù)能構(gòu)成一個(gè)集合.
其中正確的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
sin(x-
π
4
),f′(x)是f(x)的導(dǎo)函數(shù).
(1)求函數(shù)F(x)=[f′(x)]2-f(x)f′(x)的最小值和相應(yīng)的x值.
(2)若f(x)=2f′(x),求
3-cos2x
cos2x-sinxcosx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

?x∈R,不等式-x2+2ax-(a+2)<0恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asinx-
3
2
(a>0),且在[0,
π
2
]上的最大值為
π-3
2

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)判斷函數(shù)f(x)在(0,π)內(nèi)零點(diǎn)個(gè)數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為a1,且
1
2
,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=(log2a2n+1)×(log2a2n+3),求證:
1
b1
+
1
b2
+
1
b3
+…+
1
bn
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案