(2010•徐州二模)如圖AB、AC是⊙O的兩條弦,∠A=30°,過點C的切線與OB的延長線交于點D,則∠D的度數(shù)為 度.

 

 

30

【解析】

試題分析:連接OC,則∠OCD=90°,由圓周角定理知,∠COB=2∠A=60°,即可求∠D=90°﹣∠COB=30°.

【解析】
連接OC,

∴∠OCD=90°,

∴∠COB=2∠A=60°,

∴∠D=90°﹣∠COB=30°.

故答案為:30.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習卷(解析版) 題型:選擇題

變換=的幾何意義為( )

A.關(guān)于x軸反射變換 B.關(guān)于y軸反射變換

C.關(guān)于y=x反射變換 D.關(guān)于y=﹣x反射變換

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.1平行射影練習卷(解析版) 題型:選擇題

(2005•靜安區(qū)一模)Rt△ABC的直角邊AB在平面α內(nèi),頂點C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是( )

A.線段或銳角三角形

B.線段與直角三角形

C.線段或鈍角三角形

D.線段、銳角三角形、直角三角形或鈍角三角形

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習卷(解析版) 題型:選擇題

PT切⊙O于T,割線PAB經(jīng)過O點交⊙O于A、B,若PT=4,PA=2,則cos∠BPT=( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習卷(解析版) 題型:選擇題

如圖,PA、PB、DE分別與⊙O相切,若∠P=40°,則∠DOE等于( )度.

A.40 B.50 C.70 D.80

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習卷(解析版) 題型:填空題

(2010•浙江模擬)如圖,CD是⊙O的切線,T為切點,A是 上的一點,若∠TAB=100°,則∠BTD的度數(shù)為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習卷(解析版) 題型:選擇題

如圖,AB為半圓O的直徑,弦AD、BC相交于點P,若CD=3,AB=4,則tan∠BPD等于( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習卷(解析版) 題型:選擇題

下面對命題“函數(shù)f(x)=x+是奇函數(shù)”的證明不是綜合法的是( )

A.?x∈R且x≠0有f(﹣x)=(﹣x)+=﹣(x+)=﹣f(x),∴f(x)是奇函數(shù)

B.?x∈R且x≠0有f(x)+f(﹣x)=x++(﹣x)+(﹣)=0,∴f(x)=﹣f(﹣x),∴f(x)是奇函數(shù)

C.?x∈R且x≠0,∵f(x)≠0,∴==﹣1,∴f(﹣x)=﹣f(x),∴f(x)是奇函數(shù)

D.取x=﹣1,f(﹣1)=﹣1+=﹣2,又f(1)=1+=2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 2.2結(jié)構(gòu)圖練習卷(解析版) 題型:選擇題

如圖是一個結(jié)構(gòu)圖,在□處應(yīng)填入( )

A.對稱性 B.解析式 C.奇偶性 D.圖象交換

 

查看答案和解析>>

同步練習冊答案