某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交3元的管理費,預(yù)計當(dāng)每件產(chǎn)品的售價為x元(7≤x≤11)時,一年的銷售量為(12-x)2萬件.
(Ⅰ)求該分公司一年的利潤L(萬元)與每件產(chǎn)品的售價x的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的售價為多少元時,該分公司一年的利潤L最大?并求出L的最大值.
考點:函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出每件產(chǎn)品的利潤,乘以價格得到利潤L(萬元)與每件產(chǎn)品的售價x的函數(shù)關(guān)系式;
(Ⅱ)求出利潤函數(shù)的導(dǎo)函數(shù),由a得范圍得到導(dǎo)函數(shù)零點的范圍,分類討論原函數(shù)在[9,11]上的單調(diào)性,并求出a在不同范圍內(nèi)的利潤函數(shù)的最值.
解答: 解:(Ⅰ)分公司一年的利潤L(萬元)與售價x的函數(shù)關(guān)系式為L=(x-3-3)(12-x)2=(x-6)(144+x2-24x)=x3-30x2+288x-864,x∈[7,11]…(6分)
(Ⅱ)L'=3x2-60x+288=3(x2-20x+96)=3(x-12)(x-8)
令L'=0,得x=8或x=12(不合題意,舍去).…(8分)
當(dāng)x∈[7,8]時,L'>0,L單調(diào)遞增;當(dāng)x∈[8,11]時,L'<0,L單調(diào)遞減…(10分)
于是:當(dāng)每件產(chǎn)品的售價x=8時,該分公司一年的利潤最大,且最大利潤Lmax=32萬元…(12分)
點評:本題考查函數(shù)、導(dǎo)數(shù)及其應(yīng)用等知識,考查運用數(shù)學(xué)知識分析和解決實際問題的能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}滿足:a2+a9=a6,則a4=( 。
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式|x-2|-|2x-1|≤|a|+|a-1|.
(1)當(dāng)a=1時,求不等式的解集;             
(2)若不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:首項為a1,公比q≠1的等比數(shù)列{an}的前n項和為:Sn=
a1(1-qn)
1-q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c,△ABC的外接圓半徑R=
3
,且滿足
cosC
cosB
=
2sinA-sinC
sinB

(1)求角B和邊b的大小;
(2)若a+c=2
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點在坐標(biāo)原點,始邊在x軸的正半軸,且終邊經(jīng)過點(1,2),則sinα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的側(cè)面展開圖是圓心角為120°的扇形,且圓錐的全面積為
3
cm2,求:
(1)圓錐的底面半徑和母線長;
(2)圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系xOy中,取x軸、y軸正方向上的單位向量為基底.
(1)試寫出向量
a
b
,
c
d
的坐標(biāo);
(2)若(
a
+k
c
)⊥(2
b
-
a
),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式
ax-1
x2-x-2
>0(a≥0)

查看答案和解析>>

同步練習(xí)冊答案