已知正數(shù)x、y滿足xy=x+y+3.
(1)求xy的范圍;
(2)求x+y的范圍.
考點(diǎn):基本不等式在最值問題中的應(yīng)用
專題:不等式的解法及應(yīng)用
分析:(1)根據(jù)x+y≥2
xy
,將xy=x+y+3中的x+y消去,然后解不等式可求出xy的范圍,注意等號成立的條件;
(2)根據(jù)xy≤(
x+y
2
)2
,將xy=x+y+3中的xy消去,然后解不等式可求出x+y的范圍,注意等號成立的條件.
解答: 解:(1)∵正數(shù)x、y滿足x+y+3=xy,
∴xy=x+y+3≥3+2
xy
,即xy-2
xy
-3≥0,可以變形為(
xy
-3)(
xy
+1)≥0,
xy
≥3,即xy≥9,
當(dāng)且僅當(dāng)x=y=3時取等號,
∴xy的范圍是[9,+∞);
(2)∵x、y均為正數(shù),
∴x+y≥2
xy
,則xy≤(
x+y
2
)2
,
∴x+y+3=xy≤(
x+y
2
)2
,即(x+y)2-4(x+y)-12≥0,
化簡可得,(x+y+2)(x+y-6)≥0,
∴x+y≥6,
當(dāng)且僅當(dāng)x=y=3時取等號,
∴x+y的范圍是[6,+∞).
點(diǎn)評:本題考查了基本不等式在最值問題中的應(yīng)用.在應(yīng)用基本不等式求最值時要注意“一正、二定、三相等”的判斷.運(yùn)用基本不等式解題的關(guān)鍵是尋找和為定值或者是積為定值,難點(diǎn)在于如何合理正確的構(gòu)造出定值.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,將一塊直角三角形板ABO置于平面直角坐標(biāo)系中,已知AB=OB=1,AB⊥OB,點(diǎn)P(
1
2
,
1
4
)
是三角板內(nèi)一點(diǎn),現(xiàn)因三角板中陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過點(diǎn)P的任一直線MN將三角板鋸成△AMN.設(shè)直線MN的斜率為k,問:
(1)求直線MN的方程?
(2)求點(diǎn)M,N的坐標(biāo),并求k范圍?
(3)用區(qū)間D表示△AMN的面積的取值范圍,求出區(qū)間D?若S2>m(-2S+1)對任意S∈D恒成立,求m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
x+1
,若數(shù)列{an}(n∈N*)滿足:a1=1,an+1=f(an).
(Ⅰ)證明數(shù)列{
1
an
}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}滿足:cn=
2n
an
,求數(shù)列{cn}的前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,是一個算法程序框圖,在集合A={x|-10≤x≤10,x∈R}中隨機(jī)抽取一個數(shù)值做為x輸入,則輸出的y值落在區(qū)間(-5,3)內(nèi)的概率為( 。
A、0.4B、0.5
C、0.6D、0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三個內(nèi)角A,B,C所對邊分別為a,b,c,且滿足(2a+c)cosB+bcosC=0
(Ⅰ)求角B的大。
(Ⅱ)若b=2
3
,試求
AB
BC
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡[(-2)6] 
1
2
+lg20+log10025的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:△ABC中,AB=BC=4,∠ABC=30°,AD⊥BC,則
AD
AC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx滿足:①f(2)=0,②關(guān)于x的方程f(x)=x有兩個相等的實(shí)數(shù)根.求:
(1)函數(shù)f(x)的解析式;
(2)函數(shù)f(x)在[t,t+3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[0,1]時,f(x)=x2+
3
4
,則f(0.5)+f(1.5)+f(2.5)+…+f(2013.5)=
 

查看答案和解析>>

同步練習(xí)冊答案