直線y=2x+1與曲線y=x3+ax+b相切于點(diǎn)A(1,3),則a=( 。
A、1B、-1C、2D、-2
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),再由導(dǎo)數(shù)的幾何意義、把切點(diǎn)坐標(biāo)代入曲線和切線方程,即可得出結(jié)論.
解答: 解:由題意得,y′=3x2+a,∴k=3+a        
∵直線y=2x+1與曲線y=x3+ax+b相切于點(diǎn)A(1,3),
∴2=3+a,
解得,a=-1,
故選:B.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義,考查切點(diǎn)在曲線上和切線上的應(yīng)用,考查學(xué)生的計(jì)算能力,正確理解導(dǎo)數(shù)的幾何意義是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若經(jīng)過(guò)點(diǎn)P(-1,0)的直線與圓x2+y2+4x-2y+3=0相切,則這條直線在y軸上的截距是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=cos2x-2
3
sinxcosx的最小正周期是( 。
A、3πB、2πC、πD、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)在比較流行大學(xué)生獻(xiàn)身基層,其中扎根農(nóng)村者也不在少數(shù).現(xiàn)在從含甲、乙、丙的10名大學(xué)畢業(yè)生中選3人擔(dān)任大學(xué)生村官,則甲、乙至少1人入選,而丙沒(méi)有入選的選法種數(shù)是( 。
A、85B、56C、49D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+
2(1-x)
1+x
(a∈R)定義域?yàn)椋?,1),則f(x)的圖象不可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
n2(n+1)2+(n+1)2+n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos(x+
π
3
)[sin(x+
π
3
)-
3
cos(x+
π
3
)].
(1)求f(x)的值域和最小正周期;
(2)若對(duì)任意x∈[0,
π
6
],使得m[f(x)+
3
]+2=0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值
(
3
tan12°-3)
1
sin12°
4cos212°-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|2-a<x<2+a},B={x|(x+3)(x-5)<0}
(1)若a=1,求A∩B
(2)若A⊆B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案