為拋物線的焦點,為拋物線上三點.為坐標原點,若的重心,的面積分別為3,則的值為: (    )  
A.3B.4 C.6D.9
A

試題分析:設,因為為拋物線上三點,所以為拋物線的焦點,所以,因為的重心,所以,即
所以

點評:截距此類問題時,要注意“設而不求”思想的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)如圖所示,直線l與拋物線y2=x交于A(x1,y1),B(x2,y2)兩點,與x軸交于點M,且y1y2=-1,

(Ⅰ)求證:點的坐標為;
(Ⅱ)求證:OA⊥OB;
(Ⅲ)求△AOB面積的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線焦點為,過做傾斜角為的直線,與拋物線交于A,B兩點,若,則=。ā 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有一拋物線形拱橋,中午點時,拱頂離水面米,橋下的水面寬米;下午點,水位下降了米,橋下的水面寬              米.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一橋拱的形狀為拋物線,已知該拋物線拱的寬為8米,拋物線拱的面積為160平方米,則拋物線拱的高等于            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點坐標是(    )
A.(0,-4)B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線的焦點的直線交拋物線于兩點,點是原點,若,則的面積為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知直線L:與拋物線C:,相交于兩點,設點,的面積為.
(Ⅰ)若直線L上與連線距離為的點至多存在一個,求的范圍。
(Ⅱ)若直線L上與連線的距離為的點有兩個,分別記為,且滿足 恒成立,求正數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過拋物線的焦點作斜率為1的直線與該拋物線交于A、B兩點,A、B在軸上的正射影分別為D、C。若梯形ABCD的面積為,則=      。

查看答案和解析>>

同步練習冊答案