已知雙曲線方程為
x2
4
-
y2
3
=1
,則此雙曲線的右焦點(diǎn)坐標(biāo)為(  )
分析:利用雙曲線方程
x2
4
-
y2
3
=1
,可得a2=4,b2=3,,及焦點(diǎn)在x軸上,利用a,b,c之間的關(guān)系求出c,即可求出結(jié)論.
解答:解:因?yàn)殡p曲線方程為
x2
4
-
y2
3
=1

所以a2=4,b2=3.且焦點(diǎn)在x軸上
c=
a2+b2
=
7

故雙曲線的右焦點(diǎn)坐標(biāo)為:(
7
,0).
故選D.
點(diǎn)評(píng):本題主要考查雙曲線的基本性質(zhì).在求雙曲線的焦點(diǎn)時(shí),一定要先判斷出焦點(diǎn)所在位置,再下結(jié)論,以免出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓方程為
x
2
 
4
+
y
2
 
3
=1
,雙曲線
x
2
 
a
2
 
-
y
2
 
b
2
 
=1(a>0,b>0)
的焦點(diǎn)是橢圓的頂點(diǎn),頂點(diǎn)是橢圓的焦點(diǎn),則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭一模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與拋物線y2=8x有 一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)交點(diǎn)為P,若|PF|=5,則雙曲線方程為
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線方程為x2-
y2
4
=1
,過(guò)P(1,0)的直線L與雙曲線只有一個(gè)公共點(diǎn),則L的條數(shù)共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:101網(wǎng)校同步練習(xí) 高二數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:013

已知雙曲線方程為x2=1,過(guò)P(1,0)的直線L與雙曲線只有一個(gè)公共點(diǎn),則L的條數(shù)共有

[  ]

A.4條

B.3條

C.2條

D.1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線方程為x2-
y2
4
=1
,過(guò)P(1,0)的直線L與雙曲線只有一個(gè)公共點(diǎn),則L的條數(shù)共有( 。
A.4條B.3條C.2條D.1條

查看答案和解析>>

同步練習(xí)冊(cè)答案