精英家教網 > 高中數學 > 題目詳情
已知橢圓方程為
x
2
 
4
+
y
2
 
3
=1
,雙曲線
x
2
 
a
2
 
-
y
2
 
b
2
 
=1(a>0,b>0)
的焦點是橢圓的頂點,頂點是橢圓的焦點,則雙曲線的離心率為( 。
分析:先確定橢圓的焦點與頂點,從而可得雙曲線的頂點與焦點,進而可求雙曲線的離心率.
解答:解:由題意,橢圓
x
2
 
4
+
y
2
 
3
=1
的焦點坐標為(±1,0),
∴雙曲線的頂點坐標為(±1,0),
∵雙曲線以橢圓的頂點(±2,0)為焦點,
∴雙曲線的焦點為(±2,0),
所以雙曲線的離心率為:
c
a
=
2
1
=2

故選C.
點評:本題考查橢圓,雙曲線的幾何性質,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓方程為x2+
y2
8
=1,射線y=2
2
x(x≥0)與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A、B兩點(異于M).
(1)求證直線AB的斜率為定值;
(2)求△AMB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓方程為x2+2y2=1,則該橢圓的長軸長為
2
2

查看答案和解析>>

科目:高中數學 來源:2010年北京大學附中高三數學提高練習試卷(3)(解析版) 題型:解答題

已知橢圓方程為x2+=1,射線y=2x(x≥0)與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A、B兩點(異于M).
(1)求證直線AB的斜率為定值;
(2)求△AMB面積的最大值.

查看答案和解析>>

科目:高中數學 來源:2010年新教材高考數學模擬題詳解精編試卷(5)(解析版) 題型:解答題

已知橢圓方程為x2+=1,射線y=2x(x≥0)與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A、B兩點(異于M).
(1)求證直線AB的斜率為定值;
(2)求△AMB面積的最大值.

查看答案和解析>>

同步練習冊答案