已知x>0,y>0且
4
x
+
1
y
=1,則x+y最小值是
 
考點:基本不等式
專題:計算題,不等式的解法及應用
分析:x+y=(x+y)(
4
x
+
1
y
)=5+
4y
x
+
x
y
,利用基本不等式即可求得最小值,注意等號取得的條件.
解答: 解:∵x>0,y>0且
4
x
+
1
y
=1,
∴x+y=(x+y)(
4
x
+
1
y
)=5+
4y
x
+
x
y
≥5+2
4y
x
x
y
=9,
當且僅當
4y
x
=
x
y
4
x
+
1
y
=1
,即
x=6
y=3
時取等號,
∴當
x=6
y=3
時,x+y取得最小值9,
故答案為:9.
點評:該題考查利用基本不等式求函數(shù)的最值問題,屬基礎題,注意使用基本不等式求函數(shù)最值的條件:一正、二定、三相等.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

A高校自主招生設置了先后三道程序:部分高校聯(lián)合考試、本校專業(yè)考試、本校面試.在每道程序中,設置三個成績等級:優(yōu)、良、中.若考生在某道程序中獲得“中”,則該考生在本道程序中不通過,且不能進入下面的程序.考生只有全部通過三道程序,自主招生考試才算通過.某中學學生甲參加A高校自主招生考試,已知該生在每道程序中通過的概率均為
3
4
,每道程序中得優(yōu)、良、中的概率分別為p1、
1
2
、p2
(1)求學生甲不能通過A高校自主招生考試的概率;
(2)設X為學生甲在三道程序中獲優(yōu)的次數(shù),求X的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=3
3
,BC=
3
,沿對角線BD將△BCD折起,使點C移到P點,且P在平面ABD上的射影O恰好在AB上.

(1)求證:PB⊥PA;
(2)求點A到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①線性相關系數(shù)r越大,兩個變量的線性相關性越強;反之,線性相關性越弱;
②殘差平方和越小的模型,擬合效果越好;
③用相關指數(shù)R2來刻畫回歸效果,R2越小,說明模型擬合效果越好;
④隨機誤差e是衡量預報精確度的一個量,它滿足E(e)=0.
其中正確的是
 
(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為鈍角、β為銳角且sinα=
4
5
,sinβ=
12
13
,則cos(α-β)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn=2+22+23+…+2n(n∈N*),則Sn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的“l(fā)高調函數(shù)”.現(xiàn)給出下列命題:
①函數(shù)f(x)=log2x為(0,+∞)的“1高調函數(shù)”;
②函數(shù)f(x)=cosx為R上的“2π高調函數(shù)”;
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上“m高調函數(shù)”,那么實數(shù)m的取值范圍是
[2,+∞).
其中正確的命題是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x=
k
3
,k∈Z},B={x|x=
k
6
,k∈Z},則集合A與B關系為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對一塊邊長為1的正方形進行如下操作:第一步,將它分割成3×3方格,接著用中心和四個角的5個小正方形,構成如圖①所示的幾何圖形,其面積S1=
5
9
;第二步,將圖①的5個小正方形中的每個小正方形都進行與第一步相同的操作,得到圖②;依此類推,到第n步,所得圖形的面積Sn=(
5
9
n.若將以上操作類比推廣到棱長為1的正方體中,則
(Ⅰ)當n=1時,所得幾何體的體積V1=
 

(Ⅱ)到第n步時,所得幾何體的體積Vn=
 

查看答案和解析>>

同步練習冊答案