【題目】有一塊半徑為的正常數(shù))的半圓形空地,開發(fā)商計(jì)劃征地建一個(gè)矩形的游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心, 在圓的直徑上, 在半圓周上,如圖.
(1)設(shè),征地面積為,求的表達(dá)式,并寫出定義域;
(2)當(dāng)滿足取得最大值時(shí),開發(fā)效果最佳,求出開發(fā)效果最佳的角的值,
求出的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的離心率,且橢圓經(jīng)過點(diǎn),直線:與橢圓交于不同的兩點(diǎn),.
(1)求橢圓的方程;
(2)若△的面積為1(為坐標(biāo)原點(diǎn)),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩地相距為千米,汽車從甲地勻速行駛到乙地,速度每小時(shí)不超過千米.已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分組成:固定部分為元,可變部分與速度(單位; )的平方成正比,且比例系數(shù)為.
(1)求汽車全程的運(yùn)輸成本(單位:元)關(guān)于速度(單位; )的函數(shù)解析式;
(2)為了全程的運(yùn)輸成本最小,汽車應(yīng)該以多大的速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究冬季晝夜溫差大小對(duì)某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號(hào) | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請(qǐng)根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人練習(xí)罰球,每人練習(xí)6組,每組罰球20個(gè),命中個(gè)數(shù)的莖葉圖如下:
(1)求甲命中個(gè)數(shù)的中位數(shù)和乙命中個(gè)數(shù)的眾數(shù);
(2)通過計(jì)算,比較甲乙兩人的罰球水平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;
(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率為且過點(diǎn),過定點(diǎn)的動(dòng)直線與該橢圓相交于兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(2)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為正方形,,,,,,為的中點(diǎn).
(1)求證:平面;
(2)在線段上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)在(1)的條件下,若是函數(shù)的零點(diǎn),且,求的值;
(3)當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com