精英家教網 > 高中數學 > 題目詳情
求函數y=sinx-
1
2-sinx
的值域.
考點:利用導數研究函數的單調性,函數的值域
專題:函數的性質及應用,導數的概念及應用
分析:設t=
1
2-sinx
,則sinx=2-
1
t2
,t∈[
3
3
,1],函數g(t)=2-
1
t2
-t,t∈[
3
3
,1],利用導數求解即可.
解答: 解:∵函數y=sinx-
1
2-sinx

∴設t=
1
2-sinx
,則sinx=2-
1
t2
,t∈[
3
3
,1],
∴函數g(t)=2-
1
t2
-t,t∈[
3
3
,1],
∵g′(t)=
2-t3
t3
>0,
∴函數g(t)=2-
1
t2
-t,在t∈[
3
3
,1]單調遞增.
∴g(1)=0,g(
3
3
)=-
3
3
-1,
∴值域為[-
3
3
-1,0].
點評:本題考查了運用換元法,導數,求解函數的單調性,值域,屬于中檔題,關鍵是換元的新元的范圍.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

化簡:sin[nπ+(-1)n
π
3
].

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,若b=1,c=
3
2
.求∠C的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(x1,y1)、B(x2,y2)(x1x2≠0),O是坐標原點,P是線段AB的中點,若C是點A關于原點的對稱點,Q是線段BC的中點,且|OP|=|OQ|,設圓M的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明:線段AB是⊙M的直徑;
(2)若存在非零正實數p使2p(x1+x2)=y12+y22+8p2+2y1y2,且⊙M的圓心到直線x-2y=0的距離的最小值為
2
5
5
,求p的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在直線y=2x+1上有一點P,過點P且垂直于直線4x+3y-3=0的直線與圓x2+y2-2x=0有公共點,則點P的橫坐標的取值范圍是( 。
A、(-∞,-1)∪(1,+∞)
B、(-1,1)
C、[-
12
5
,-
2
5
]
D、(-
12
5
,-
2
5

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC是等腰直角三角形,∠ACB=90°,M是斜邊AB的中點,
CM
=
a
,
CA
=
b
,求證:
(1)|
a
-
b
|=|
a
|;
(2)|
a
+(
a
-
b
)|=|
b
|.

查看答案和解析>>

科目:高中數學 來源: 題型:

設圓的方程是x2+y2+2ax+2y+(a-1)2=0,0<a<1,則原點與圓的位置關系
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2cos(
π
3
-
x
2
).
(1)求f(x)的最小正周期T;
(2)求f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知{an}是遞增的等差數列,a1=2,a22=a4+8.
(1)求數列{an}的通項公式;
(2)若bn=2an,求數列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案