設(shè){an}是首項(xiàng)為a1,公差為-1的等差數(shù)列,Sn為其前n項(xiàng)和,若S1,S2,S4成等比數(shù)列,則a1的值為
 
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由條件求得,Sn=
n(2a1+1-n)
2
,再根據(jù)S1,S2,S4成等比數(shù)列,可得 S22=S1•S4,由此求得a1的值.
解答: 解:由題意可得,an=a1+(n-1)(-1)=a1+1-n,Sn=
n(a1+an)
2
=
n(2a1+1-n)
2
,
再根據(jù)若S1,S2,S4成等比數(shù)列,可得 S22=S1•S4,即 (2a1-1)2=a1•(4a1-6),
解得 a1=-
1
2
,
故答案為:-
1
2
點(diǎn)評:本題主要考查等差數(shù)列的前n項(xiàng)和公式,等比數(shù)列的定義和性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

π為圓周率,e=2.71828…為自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x)=
lnx
x
的單調(diào)區(qū)間;
(Ⅱ)求e3,3e,eπ,πe,3π,π3這6個數(shù)中的最大數(shù)與最小數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
=(1,2),
b
=(4,2),
c
=m
a
+
b
(m∈R),且
c
a
的夾角等于
c
b
的夾角,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)甲、乙兩個圓柱的底面積分別為S1,S2,體積分別為V1,V2,若它們的側(cè)面積相等,且
S1
S2
=
9
4
,則
V1
V2
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知4a=2,lgx=a,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C的兩個焦點(diǎn)為(-
2
,0),(
2
,0),一個頂點(diǎn)是(1,0),則C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面上一機(jī)器人在行進(jìn)中始終保持與點(diǎn)F(1,0)的距離和到直線x=-1的距離相等,若機(jī)器人接觸不到過點(diǎn)P(-1,0)且斜率為k的直線,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)O為線段BD的中點(diǎn),設(shè)點(diǎn)P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( 。
A、[
3
3
,1]
B、[
6
3
,1]
C、[
6
3
,
2
2
3
]
D、[
2
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-a)2+(y-b)2=1,設(shè)平面區(qū)域Ω=
x+y-7≤0
x-y+3≥0
y≥0
,若圓心C∈Ω,且圓C與x軸相切,則a2+b2的最大值為( 。
A、5B、29C、37D、49

查看答案和解析>>

同步練習(xí)冊答案