(本題滿分12分)
設(shè)函數(shù)(a>0,b,cÎR),曲線在點P(0,f (0))處的切線方程為.
(Ⅰ)試確定b、c的值;
(Ⅱ)是否存在實數(shù)a使得過點(0,2)可作曲線的三條不同切線,若存在,求出a的取值范圍;若不存在,請說明理由.
(Ⅰ). (Ⅱ)當(dāng)時,過點(0,2)可作曲線的三條不同切線.
【解析】
試題分析:(Ⅰ)由得,
, ……2分
又由曲線在點P(0,)處的切線方程為,得,
,故.……4分
(Ⅱ)由(Ⅰ)知,.
設(shè)存在實數(shù)a使得過點(0,2)可作曲線的三條不同切線,并設(shè)切點為.
則切線的斜率為,
切線方程為,.
∵切線過點(0,2),∴.
于是得, (*) ……6分
由已知過點(0,2)可作曲線的三條不同切線,則方程(*)應(yīng)有三個不同實數(shù)根.
令,則.
令,得或.……8分
由于,所以函數(shù)在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),在區(qū)間為增函數(shù),所以函數(shù)在處取極大值,在處取極小值.
要使方程(*)有三個不同實數(shù)根,,得.……11分
綜上所述,當(dāng)時,過點(0,2)可作曲線的三條不同切線.……12分
注:如有其它解法,斟情給分.
考點:本題主要考查導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值,簡單不等式解法。
點評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,(2)作為存在性問題,先假定存在實數(shù)a使得過點(0,2)可作曲線的三條不同切線,通過研究函數(shù)的單調(diào)性,認(rèn)識函數(shù)特征,轉(zhuǎn)化成只需使方程有三個不同實數(shù)根,得到a的不等式。
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個實根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點,且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com