一個袋子中裝有3個紅球和2個白球,假設(shè)每一個球被摸到的可能性是相等的.現(xiàn)從袋子中摸出2個球,則摸出的球為1個紅球和1個白球的概率是
 
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:利用列舉法列出基本事件的個數(shù),然后利用古典概型的概率公式進行求解即可.
解答: 解:記袋子中的5個球為:紅1,紅2,紅3,白1,白2,
則從袋子中摸出2個球的基本事件為:(紅1,紅2),(紅1,紅3),(紅1,白1),(紅1,白2),(紅2,紅3),(紅2,白1),(紅2,白2),(紅3,白1),(紅3,白2),(白1,白2),共10個.
其中摸出的球為1個紅球和1個白球的事件為:(紅1,白1),(紅1,白2),(紅2,白1),(紅2,白2),(紅3,白1),(紅3,白2),共6個.
∴從袋子中摸出2個球,則摸出的球為1個紅球和1個白球的概率是P=
6
10
=
3
5

故答案為:
3
5
點評:本題主要考查古典概型的概率公式求法,利用列舉法是解決古典概率的基本方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若正數(shù)a,b滿足2a+b=1,則4a2+b2+ab的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P,A,B,C是球O表面上的四個點,PA,PB,PC兩兩垂直,且PA=1,PB=2,PC=3,則該球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線kx+y-2=0(k∈R)與圓x2+y2+2x-2y+1=0的位置關(guān)系是( 。
A、相交B、相切
C、相離D、與k值有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線x+
3
y+1=0與圓x2+y2+mx=0相切,則實數(shù)m的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖是兩個邊長為2的正方形和一個圓,如圖所示.則此幾何體的表面積為(  )
A、4πB、5πC、6πD、8π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,-1),
b
=(3,1),則|
a
-2
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一元二次方程x2+x+a+1=0有一個正根和一個負根,則a取值范圍是(  )
A、a<0B、a>0
C、a<-1D、a>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx+
1
2
x2-x

(1)當a=-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若h(x)=f(x)-ax,對定義域內(nèi)任意x,均有h(x)≥0恒成立,求實數(shù)a的取值范圍?
(3)證明:對任意的正整數(shù)m,n,
1
ln(m+1)
+
1
ln(m+2)
+…+
1
ln(m+n)
n
m(m+n)
恒成立.

查看答案和解析>>

同步練習冊答案