已知橢圓過(guò)點(diǎn),其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點(diǎn),與橢圓分別交于點(diǎn),各點(diǎn)均不重合,且滿足. 當(dāng)時(shí),試證明直線過(guò)定點(diǎn).過(guò)定點(diǎn)(1,0)

(1)
(2)結(jié)合向量關(guān)系式,以及韋達(dá)定理,來(lái)分析直線的方程,進(jìn)而得到定點(diǎn)坐標(biāo)。

解析試題分析:解:(Ⅰ)設(shè)橢圓的焦距為                        1分
由題意知,且
所以橢圓方程為.                                   4分
(Ⅱ)由題意設(shè)的方程為       5分
6分
同理由
,∴  。1)            7分
聯(lián)立,                          8分
只需    (2)
且有     (3)                     9分
把(3)代入(1)得且滿足(2),              10分
依題意,,故
從而的方程為,即直線過(guò)定點(diǎn)(1,0)                              12分
考點(diǎn):橢圓方程,直線與橢圓的位置關(guān)系
點(diǎn)評(píng):主要是考查了直線與橢圓的位置關(guān)系的運(yùn)用,代數(shù)法來(lái)設(shè)而不求的解題思想是解析幾何的本質(zhì),屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在等腰直角中,,,點(diǎn)在線段上.

(Ⅰ) 若,求的長(zhǎng);
(Ⅱ)若點(diǎn)在線段上,且,問(wèn):當(dāng)取何值時(shí),的面積最?并求出面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)是直線被橢圓所截得的線段中點(diǎn),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為幾點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線上兩點(diǎn)的極坐標(biāo)分別為,圓的參數(shù)方程(為參數(shù)).
(Ⅰ)設(shè)為線段的中點(diǎn),求直線的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)狱c(diǎn)到點(diǎn)的距離與到直線的距離之比為定值,記的軌跡為

(1)求的方程,并畫(huà)出的簡(jiǎn)圖;
(2)點(diǎn)是圓上第一象限內(nèi)的任意一點(diǎn),過(guò)作圓的切線交軌跡,兩點(diǎn).
(i)證明:;
(ii)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓的右焦點(diǎn)為,直線軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(I)求橢圓的方程;
(II)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(、為直徑的兩個(gè)端點(diǎn)),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,過(guò)拋物線>0)的頂點(diǎn)作兩條互相垂直的弦OA、OB。

⑴設(shè)OA的斜率為k,試用k表示點(diǎn)A、B的坐標(biāo);
⑵求弦AB中點(diǎn)M的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線與拋物線相切于點(diǎn),且與軸交于點(diǎn),為坐標(biāo)原點(diǎn),定點(diǎn)的坐標(biāo)為.

(1)若動(dòng)點(diǎn)滿足,求點(diǎn)的軌跡;
(2)若過(guò)點(diǎn)的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點(diǎn)之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案