求以橢圓內(nèi)一點A(1,-1)為中點的弦所在直線的方程。

 

【答案】

x-4y-5=0

【解析】參數(shù)法解決直線與圓錐曲線問題很簡單:令,據(jù)題意得:=0,結(jié)合韋達定理

解法1:設(shè)以A(1,-1)為中點的弦所在的直線方程為,                         ……………3分

把它代入

    ……………7分

∵弦以A(1,-1)為中點,∴交點所對應(yīng)的參數(shù)有:=0

 ∴=0,∴……………10分

∴所求的直線方程為即x-4y-5=0

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,其左、右焦點分別為F1,F(xiàn)2,點P(x0,y0)是坐標平面內(nèi)一點,且|OP|=
7
2
PF1
PF2
=
3
4
(O為坐標原點).
(1)求橢圓C的方程;
(2)過點S(0,-
1
3
)
且斜率為k的動直線l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點?若存在,求出M的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在坐標平面內(nèi),M、N是x軸上關(guān)于原點O對稱的兩點,P是上半平面內(nèi)一點,△PMN的面積為
3
2
,點A坐標為(1+
3
,
3
2
),
MP
=m•
OA
(m為常數(shù))
,
MN
OP
=|
MN
|

(Ⅰ)求以M、N為焦點且過點P的橢圓方程;
(Ⅱ)過點B(-1,0)的直線l交橢圓于C、D兩點,交直線x=-4于點E,點B、E分
CD
的比分別為λ1
、λ2,求證:λ12=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求以橢圓x2+4y2=16內(nèi)一點A(1,-1)為中點的弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面內(nèi),已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點為F1,F(xiàn)2,橢圓的離心率為
3
2
,P點是橢圓上任意一點,且|PF1|+|PF2|=4,
(1)求橢圓的標準方程;
(2)以橢圓的上頂點B為直角頂點作橢圓的內(nèi)接等腰直角三角形ABC,這樣的等腰直角三角形是否存在?若存在請說明有幾個、并求出直角邊所在直線方程?若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案