【題目】2018年9~12月某市郵政快遞業(yè)務量完成件數(shù)較2017年9~12月同比增長25%,該市2017年9~12月郵政快遞業(yè)務量柱形圖及2018年9~12月郵政快遞業(yè)務量結(jié)構(gòu)扇形圖如圖所示,根據(jù)統(tǒng)計圖,給出下列結(jié)論:
①2018年9~12月,該市郵政快遞業(yè)務量完成件數(shù)約1500萬件;
②2018年9~12月,該市郵政快遞同城業(yè)務量完成件數(shù)與2017年9~12月相比有所減少;
③2018年9~12月,該市郵政快遞國際及港澳臺業(yè)務量同比增長超過75%,其中正確結(jié)論的個數(shù)為( )
A. 3
B. 2
C. 1
D. 0
科目:高中數(shù)學 來源: 題型:
【題目】定義:如果數(shù)列的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱為“三角形”數(shù)列,對于“三角形”數(shù)列,如果函數(shù)使得仍為一個“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”.
(1)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列的首項為2010,是數(shù)列的前n項和,且滿足,證明是“三角形”數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是直角坐標平面內(nèi)y軸及y軸的右側(cè)的動點,點到直線(是正常數(shù))的距離為,到點的距離為,且.
(1)求動點所在曲線的方程;
(2)直線過點且與曲線交于不同兩點,分別過點作直線的垂線,對應的垂足分別為,記(是(2)中的點),,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】費馬點是指三角形內(nèi)到三角形三個頂點距離之和最小的點。當三角形三個內(nèi)角均小于時,費馬點與三個頂點連線正好三等分費馬點所在的周角,即該點所對的三角形三邊的張角相等均為。根據(jù)以上性質(zhì),函數(shù)的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐P﹣ABC中,AB=1,BC=2,AC,PC,PA,PB,E是線段BC的中點.
(1)求點C到平面APE的距離d;
(2)求二面角P﹣EA﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,且,點在二次函數(shù)的圖象上.
(1)試判斷數(shù)列是否為算術平方根遞推數(shù)列?若是,請說明你的理由;
(2)記,求證:數(shù)列是等比數(shù)列,并求出通項公式;
(3)在數(shù)列中依據(jù)某種順序從左至右取出其中的項,…,把這些項重新組成一個新數(shù)列,….若數(shù)列是首項為、公比為的無窮等比數(shù)列,且數(shù)列各項的和為,求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方形上連接等腰直角三角形,直角三角形上再連接正方形……如此無限重復下去,設正方形面積為,三角形面積為.當?shù)谝粋正方形的邊長為2時,則這些正方形和三角形的面積的總和為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位從一所學校招收某類特殊人才.對位已經(jīng)選拔入圍的學生進行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:
一般 | 良好 | 優(yōu)秀 | |
一般 | |||
良好 | |||
優(yōu)秀 |
例如表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學生是人.由于部分數(shù)據(jù)丟失,只知道從這位參加測試的學生中隨機抽取一位,抽到邏輯思維能力優(yōu)秀的學生的概率為.
(1)求,的值;
(2)從運動協(xié)調(diào)能力為優(yōu)秀的學生中任意抽取位,求其中至少有一位邏輯思維能力優(yōu)秀的學生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com