【題目】某經(jīng)銷(xiāo)商計(jì)劃銷(xiāo)售一款新型的空氣凈化器,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn)以下規(guī)律:當(dāng)每臺(tái)凈化器的利潤(rùn)為 x (單位:元, x 0 )時(shí),銷(xiāo)售量 q(x) (單位:百臺(tái))與 x 的關(guān)系滿(mǎn)足:若 x 不超過(guò) 20 , 則 ;若 x 大于或等于180 ,則銷(xiāo)售量為零;當(dāng) 20 ≤ x ≤180 時(shí),( a , b 為實(shí)常數(shù)).
(Ⅰ)求函數(shù) q(x) 的表達(dá)式;
(Ⅱ)當(dāng) x 為多少時(shí),總利潤(rùn)(單位:元)取得最大值,并求出該最大值.
【答案】(1).
(2)當(dāng) x 等于80 元時(shí),總利潤(rùn)取得最大值 240000 元.
【解析】
試題分析:(1)求分段函數(shù)解析式,可從分段的節(jié)點(diǎn)出發(fā),尋找條件,確定參數(shù):解得列出(2)先列出利潤(rùn)函數(shù)解析式,分三段求最值,第一段為分式函數(shù),可利用變量分離,結(jié)合單調(diào)性求最大值;第二段利用導(dǎo)數(shù)求極值點(diǎn),研究單調(diào)趨勢(shì),求最大值;第三段為常函數(shù),最后求三段最大值的最大值
試題解析:解:(1)當(dāng)時(shí),由得
故
(2)設(shè)總利潤(rùn),
由(1)得
當(dāng)時(shí),,在上單調(diào)遞增,
所以當(dāng)時(shí),有最大值.
當(dāng)時(shí),,,
令,得.
當(dāng)時(shí),,單調(diào)遞增,
當(dāng)時(shí),,單調(diào)遞減,
所以當(dāng)時(shí),有最大值.
當(dāng)時(shí),﹒
答:當(dāng)等于元時(shí),總利潤(rùn)取得最大值元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C:y2=4x和直線(xiàn)l:x=-1.
(1)若曲線(xiàn)C上存在一點(diǎn)Q,它到l的距離與到坐標(biāo)原點(diǎn)O的距離相等,求Q點(diǎn)的坐標(biāo);
(2)過(guò)直線(xiàn)l上任一點(diǎn)P作拋物線(xiàn)的兩條切線(xiàn),切點(diǎn)記為A,B,求證:直線(xiàn)AB過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,∠BAD=120°,∠BCD=60°,cosD=﹣ ,AD=DC=2.
(Ⅰ)求cos∠DAC及AC的長(zhǎng);
(Ⅱ)求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)過(guò)點(diǎn)作直線(xiàn)使它被直線(xiàn)和截得的線(xiàn)段被點(diǎn)平分,求直線(xiàn)的方程;
(2)光線(xiàn)沿直線(xiàn)射入,遇直線(xiàn)后反射,求反射光線(xiàn)所在的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|3≤≤27},B={x|>1}.
(1)分別求A∩B,()∪A;
(2)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在參加市里主辦的科技知識(shí)競(jìng)賽的學(xué)生中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,這40名學(xué)生的成績(jī)?nèi)吭?0分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組,成績(jī)大于等于40分且小于50分;第二組,成績(jī)大于等于50分且小于60分;……第六組,成績(jī)大于等于90分且小于等于100分,據(jù)此繪制了如圖所示的頻率分布直方圖.在選取的40名學(xué)生中.
(1)求成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù)及成績(jī)?cè)趨^(qū)間內(nèi)平均成績(jī);
(2)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選3名學(xué)生,求至少有1名學(xué)生成績(jī)?cè)趨^(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的f(x)= sin(ωx+φ)(ω>0,﹣ )圖象關(guān)于直線(xiàn)x= 對(duì)稱(chēng),且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π,若 (0<α<π),則 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知隨機(jī)變量X服從正態(tài)分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,則P(5<X<6)=( )
A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知P(x0 , y0)是橢圓C: =1上一點(diǎn),過(guò)原點(diǎn)的斜率分別為k1 , k2的兩條直線(xiàn)與圓(x﹣x0)2+(y﹣y0)2= 均相切,且交橢圓于A,B兩點(diǎn).
(1)求證:k1k2=﹣ ;
(2)求|OA||OB|得最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com