設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).

(1)若l在兩坐標(biāo)軸上截距相等,求l的方程;

(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.

 

(1)3x+y=0或x+y+2=0

(2)(-∞,-1]

【解析】【解析】
(1)當(dāng)直線過原點(diǎn)時(shí),該直線在x軸和y軸上的截距為零,∴a=2,方程即為3x+y=0.

當(dāng)直線不經(jīng)過原點(diǎn)時(shí),截距存在且均不為0,

=a-2,即a+1=1.

∴a=0,方程即為x+y+2=0.綜上,l的方程為3x+y=0或x+y+2=0.

(2)將l的方程化為y=-(a+1)x+a-2,

∴a≤-1.

綜上可知a的取值范圍是(-∞,-1].

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-6雙曲線(解析版) 題型:選擇題

已知雙曲線中心在原點(diǎn)且一個(gè)焦點(diǎn)為F1(-,0),點(diǎn)P位于該雙曲線上,線段PF1的中點(diǎn)坐標(biāo)為(0,2),則雙曲線的方程是(  )

A.-y2=1 B.x2-=1

C.=1 D.=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:填空題

已知圓C過點(diǎn)A(1,0)和B(3,0),且圓心在直線y=x上,則圓C的標(biāo)準(zhǔn)方程為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-2直線的交點(diǎn)坐標(biāo)與距離公式(解析版) 題型:填空題

若直線l1:x+2my-1=0與l2:(3m-1)x-my-1=0平行,則實(shí)數(shù)m的值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:解答題

如圖所示,射線OA、OB分別與x軸正半軸成45°和30°角,過點(diǎn)P(1,0)作直線AB分別交OA、OB于A、B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線y=x上時(shí),求直線AB的方程.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:選擇題

已知函數(shù)f(x)=ax(a>0,且a≠1),當(dāng)x<0時(shí),f(x)>1,方程y=ax+表示的直線是(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-7立體幾何中的向量方法(解析版) 題型:選擇題

在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,則AD與平面AA1C1C所成的角的正弦值為(  )

A. B.- C. D.-

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運(yùn)算(解析版) 題型:解答題

如圖,已知矩形ABCD和矩形ADEF所在的平面互相垂直,點(diǎn)M,N分別在對角線BD,AE上,且BM=BD,AN=AE.求證:MN∥平面CDE.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-3空間點(diǎn)直線平面之間的位置關(guān)系(解析版) 題型:解答題

如圖,已知在空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn),G,H分別是BC,CD上的點(diǎn),且=2.求證:直線EG,F(xiàn)H,AC相交于一點(diǎn).

 

 

查看答案和解析>>

同步練習(xí)冊答案