【題目】如圖,在四棱錐中,平面平面,底面是平行四邊形,且,.
(1)求證:;
(2)若底面是菱形,與平面所成角為,求平面與平面所成銳二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)過作,垂足為,連接,只需證明即可;(2)是平面與平面所成銳二面角的平面角,在三角形中求解即可.
(1)過作,垂足為,連接,
因?yàn)槠矫?/span>平面,所以平面,
因?yàn)?/span>,所以平面,所以,
因?yàn)?/span>,所以,
因?yàn)?/span>,所以.
解法一:(2)因?yàn)?/span>,平面,平面,
所以平面,
設(shè)平面平面直線,所以,
因?yàn)?/span>平面,所以,,
所以是平面與平面所成銳二面角的平面角,
因?yàn)?/span>平面,
故是直線與平面所成角,即,
設(shè),則,,
設(shè),則,,
所以,所以,
故,所以,
即平面與平面所成銳二面角的余弦值為.
解法二:(2)因?yàn)?/span>平面,平面,
故是直線與平面所成角,即,
且,,
設(shè),則,,
在中,設(shè),則,,
在中,所以,所以,
以為坐標(biāo)原點(diǎn),分別以、、所在直線為、、軸建立空間直角坐標(biāo)系,
則,,,
則平面的法向量,
設(shè)平面的法向量,
因?yàn)?/span>,,
所以,故,
設(shè)平面與平面的夾角為,
則,
平面與平面所成銳二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若存在實(shí)數(shù)使得關(guān)于的方程有三個不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年某地初中畢業(yè)升學(xué)體育考試規(guī)定:考生必須參加長跑、擲實(shí)心球、1分鐘跳繩三項(xiàng)測試,三項(xiàng)測試各項(xiàng)20分,滿分60分.某學(xué)校在初三上學(xué)期開始時,為掌握全年級學(xué)生1分鐘跳繩情況,按照男女比例利用分層抽樣抽取了100名學(xué)生進(jìn)行測試,其中女生54人,得到下面的頻率分布直方圖,計分規(guī)則如表1:
表1
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(1)規(guī)定:學(xué)生1分鐘跳繩得分20分為優(yōu)秀,在抽取的100名學(xué)生中,男生跳繩個數(shù)大于等于185個的有28人,根據(jù)已知條件完成表2,并根據(jù)這100名學(xué)生測試成績,能否有99%的把握認(rèn)為學(xué)生1分鐘跳繩成績優(yōu)秀與性別有關(guān)?
表2
跳繩個數(shù) | 合計 | ||
男生 | 28 | ||
女生 | 54 | ||
合計 | 100 |
附:參考公式:
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)根據(jù)往年經(jīng)驗(yàn),該校初三年級學(xué)生經(jīng)過一年的訓(xùn)練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進(jìn)步.假設(shè)今年正式測試時每人每分鐘跳繩個數(shù)比初三上學(xué)期開始時個數(shù)增加10個,全年級恰有2000名學(xué)生,所有學(xué)生的跳繩個數(shù)服從正態(tài)分布(用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,各組數(shù)據(jù)用中點(diǎn)值代替).
①估計正式測試時,1分鐘跳182個以上的人數(shù)(結(jié)果四舍五入到整數(shù));
②若在全年級所有學(xué)生中任意選取3人,正式測試時1分鐘跳195個以上的人數(shù)為,求的分布列及期望.
附:若隨機(jī)變量服從正態(tài)分布,則,,..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是的導(dǎo)函數(shù),討論的單調(diào)性;
(2)若(是自然對數(shù)的底數(shù)),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),兩個點(diǎn)列 和 滿足:① ;②
(1)求點(diǎn)和的坐標(biāo);
(2)求向量的坐標(biāo);
(3)對于正整數(shù)k,用表示無窮數(shù)列 中從第k+1項(xiàng)開始的各項(xiàng)之和,用表示無窮數(shù)列 中從第k項(xiàng)開始的各項(xiàng)之和,即, 若存在正整數(shù)k和p,使得,求k,p的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的右焦點(diǎn),點(diǎn)在上,且軸.
(1)求的方程;
(2)過的直線交于兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解兒子身高與其父親身高的關(guān)系,隨機(jī)調(diào)查了5對父子的身高,統(tǒng)計數(shù)據(jù)如下表所示.
編 號 | A | B | C | D | E |
父親身高 | 174 | 176 | 176 | 176 | 178 |
兒子身高 | 175 | 175 | 176 | 177 | 177 |
(1)從這五對父子任意選取兩對,用編號表示出所有可能取得的結(jié)果,并求隨機(jī)事件 “兩對父子中兒子的身高都不低于父親的身高”發(fā)生的概率;
(2)由表中數(shù)據(jù),利用“最小二乘法”求關(guān)于的回歸直線的方程.
參考公式:,;回歸直線:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com