【題目】已知為橢圓的右焦點,點在上,且軸.
(1)求的方程;
(2)過的直線交于兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.
【答案】(1); (2)見解析.
【解析】
(1)將點的坐標代入橢圓方程,結(jié)合橢圓方程中a,b,c的關(guān)系,求出a2,b2的值,進而求得橢圓標準方程;
(2)聯(lián)立橢圓方程和直線方程,利用一元二次方程的根與系數(shù)的關(guān)系,結(jié)合斜率公式,證得,進而問題得證.
(1)因為點在上,且軸,所以,
由 ,得,
故橢圓的方程為.
(2)由題意可知直線的斜率存在,設(shè)直線的的方程為,
令,得的坐標為.
由,得.
設(shè),則有.①
設(shè)直線的斜率分別為,
從而.
因為直線的方程為,所以,
所以
. ②
把①代入②,得.
又,所以,故直線的斜率成等差數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐O—ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A—BE—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①非零向量滿足,則和的夾角為30°;
②將函數(shù) 的圖像按向量 平移,得到函數(shù)的圖像;
③在三角形ABC中,若 ,則三角形ABC為等腰三角形;其中正確命題的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于,兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,底面是平行四邊形,且,.
(1)求證:;
(2)若底面是菱形,與平面所成角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為矩形, 平面, .
(1)求證: ;
(2)若直線平面,試判斷直線與平面的位置關(guān)系,并說明理由;
(3)若, ,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法錯誤的是( )
A. 若“”為假命題,則p,q均為假命題
B. “ ”是“”的充分不必要條件
C. “”的必要不充分條件是“”
D. 若命題p:,,則命題:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中,是正三角形,,點在底面上的射影恰好是中點,側(cè)棱和底面成角.
(1)求證:;
(2)求二面角的大。
(3)求直線與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(2)記,為數(shù)列的前項和,若對任意的正整數(shù)都成立,求實數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com