學(xué)校餐廳每天供應(yīng)500名學(xué)生用餐,每星期一有A,B兩種菜可供選擇.調(diào)查表明,凡是在這星期一選A菜的,下星期一會有
1
5
改選B菜;而選B菜的,下星期一會有
3
10
改選A菜.用an,bn分別表示第n個星期選A的人數(shù)和選B的人數(shù).
(1)試用an+1(n∈N*,n≥2)表示an,判斷數(shù)列{an-300}是否成等比數(shù)列并說明理由;
(2)若第一個星期一選A種菜的有200人,那么第10個星期一選A種菜的大約有多少人?
考點:數(shù)列的應(yīng)用
專題:應(yīng)用題,等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)這星期一選A菜的,下星期一會有
1
5
改選B菜;而選B菜的,下星期一會有
3
10
改選A菜,可得an+1=
1
2
an+250,再利用等比數(shù)列的定義判斷數(shù)列{an-300}是否成等比數(shù)列;
(2)利用{an-300}是以a1-300為首項,
1
2
為公比的等比數(shù)列,即可求出第10個星期一選A種菜的人數(shù).
解答: 解:(1)由題知,對n∈N*有bn=500-an,
∴當(dāng)n∈N*且n≥2時,an=
4
5
an-1+
3
10
(500-an-1)⇒an=
1
2
an-1+250⇒an-300=
1
2
(an-1-300)
,
∴an+1=
1
2
an+250,
∴當(dāng)a1=300時,{an-300}不是等比數(shù)列;
  當(dāng)a1≠300時,{an-300}是以a1-300為首項,
1
2
為公比的等比數(shù)列.
(2)當(dāng)a1=200時,an-300=(
1
2
)n-1(a1-300)⇒an=300-
100
2n-1
a10=300-
100
29
≈300

∴第10個星期一選A種菜的大約有300人.
點評:本題考查數(shù)列知識在生產(chǎn)實際中的應(yīng)用,理清題設(shè)中的數(shù)量關(guān)系,合理地運用數(shù)列知識進(jìn)行求解是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行圖(一、12)所示的程序框圖,則輸出S=(  )
A、112B、55
C、110D、114

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等邊三角形ABC的邊長為3,點D、E分別是邊AB、AC上的點,且滿足
AD
DB
=
CE
EA
=
1
2
(如圖1).將△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,連結(jié)A1B、A1C(如圖1).
(Ⅰ)求證:A1D⊥平面BCED:
(Ⅱ)在線段BC上是否存在點P,使直線PA1與平面A1BD所成的角的正弦值為
3
2
?若存在,求出PB的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在斜三棱柱ABC-A1B1C1中,點O是A1C1的中點,AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)求證:AB1⊥AlC;
(2)求點C到平面AA1B1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,AB⊥AC,PA=PB=PC,D,E分別是AC,BC的中點,AB=2
3
,AC=2,PD=2
2
,Q為線段PE上不同于端點的一動點.
(Ⅰ)求證:AC⊥DQ;
(Ⅱ)若二面角B-AQ-E的大小為60°,求
QE
PE
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥平面ABC,AP=AB=2
3
,AC=4,D為PC中點,E為PB上一點,且BC∥平面ADE.
(Ⅰ)證明:E為PB的中點;
(Ⅱ)若PB⊥AD,求直線AC與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C1:x2+y2+2x+8y-8=0與圓C2:x2+y2-4x-4y-2=0的公共弦長等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)ave{a,b,c}表示實數(shù)a,b,c的平均數(shù),max{a,b,c}表示實數(shù)a,b,c的最大值.設(shè)A=ave{-
1
2
x+2,x,
1
2
x+1},M=max{-
1
2
x+2,x,
1
2
x+1},若M=3|A-1|,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+a
(x-1)2
,(x>1)
(1)當(dāng)a=1時,求曲線y=f(x)在點P(2,f(2))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)函數(shù)f(x)在區(qū)間[3,+∞)上是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案