4.把參數(shù)方程$\left\{\begin{array}{l}{x=\frac{4k}{1-{k}^{2}}}\\{y=\frac{4{k}^{2}}{1-{k}^{2}}}\end{array}\right.$(k為參數(shù))化為普通方程,并說明它表示什么曲線.

分析 由已知得y=$\frac{4{k}^{2}}{1-{k}^{2}}$=k×$\frac{4k}{1-{k}^{2}}$=kx,從而k=$\frac{y}{x}$,由此能求出該參數(shù)方程的普通方程.

解答 解:∵參數(shù)方程$\left\{\begin{array}{l}{x=\frac{4k}{1-{k}^{2}}}\\{y=\frac{4{k}^{2}}{1-{k}^{2}}}\end{array}\right.$(k為參數(shù)),
∴y=$\frac{4{k}^{2}}{1-{k}^{2}}$=k×$\frac{4k}{1-{k}^{2}}$=kx,
∴該參數(shù)方程的普通方程為y=kx,∴k=$\frac{y}{x}$,
∴x=$\frac{4×\frac{y}{x}}{1-\frac{{y}^{2}}{{x}^{2}}}$,整理,得該曲線的普通方程為x2-y2-4y=0.
它表示焦點(diǎn)在y軸上的雙曲線.

點(diǎn)評(píng) 本題考查曲線的普通方程的求法,考查直角坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=x2-alnx-(a-2)x.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2(1)求滿足條件的最小正整數(shù)a的值;(2)求證:$f'(\frac{{{x_1}+{x_2}}}{2})>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若(sinθ+$\frac{1}{x}$)5的展開式中$\frac{1}{{x}^{3}}$的系數(shù)為2,則cos2θ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線$\left\{\begin{array}{l}x=tcos{75°}\\ y=tsin{75°}\end{array}$(t為參數(shù))與曲線$\left\{\begin{array}{l}x=3sinθ\\ y=2cosθ\end{array}$(θ為參數(shù))的公共點(diǎn)個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線${C_2}:ρ{sin^2}θ=4cosθ$.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)).
(Ⅰ)求C1,C2的直角坐標(biāo)方程;
(Ⅱ)C與C1,C2交于不同四點(diǎn),這四點(diǎn)在C上的排列順序?yàn)镻,Q,R,S,求||PQ|-|RS||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為S=1320,則判斷框內(nèi)應(yīng)填入的內(nèi)容是( 。
A.K<9?B.K<10?C.K<11?D.K<12?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)矩陣M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,求矩陣M的逆矩陣M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出s的值等于( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.《孫子算經(jīng)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,其中一個(gè)問題的解答可以用如圖的算法來實(shí)現(xiàn),若輸入的S,T的值分別為40,126,則輸出a,b的值分別為( 。
A.17,23B.21,21C.19,23D.20,20

查看答案和解析>>

同步練習(xí)冊(cè)答案