【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料,乙材料.用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料,乙材料 ,用3個工時。生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元,該企業(yè)現(xiàn)有甲材料150,乙材料,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A,產(chǎn)品B的利潤之和的最大值為______________元.

【答案】216000元

【解析】設(shè)生產(chǎn)A產(chǎn)品x件,B產(chǎn)品y件,利潤總和為z,

,目標(biāo)函數(shù)z=2100x+900y,

做出可行域如圖所示:

z=2100x+900y變形,得,

由圖象可知,當(dāng)直線經(jīng)過點M時,z取得最大值.

解方程組 M的坐標(biāo)為(60,100).

所以當(dāng)x=60,y=100時,zmax=2100×60+900×100=216000.

故生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為216000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計表:

第一次

第二次

第三次

第四次

第五次

參會人數(shù) (萬人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.

(2)已知購買原材料的費用 (元)與數(shù)量 (袋)的關(guān)系為,

投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費用).

參考公式: .

參考數(shù)據(jù): , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,若滿足條件:存在,使上的值域為,則稱為“倍縮函數(shù)”.若函數(shù)為“倍縮函數(shù)”,則實數(shù)的取值范圍是

A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]

C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點的坐標(biāo)為,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,以軸的非負(fù)半軸為極軸,選擇相同的單位長度建立極坐標(biāo)系,圓極坐標(biāo)方程為.

(Ⅰ)當(dāng)時,求直線的普通方程和圓的直角坐標(biāo)方程;

(Ⅱ)直線與圓的交點為、,證明:是與無關(guān)的定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了檢驗學(xué)習(xí)情況,某培訓(xùn)機構(gòu)于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學(xué)員的成績進行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設(shè)成績不低于90分者命名為“優(yōu)秀學(xué)員”.

(1)分別求甲、乙兩班學(xué)員成績的平均分(結(jié)果保留一位小數(shù));

(2)從甲班4名優(yōu)秀學(xué)員中抽取兩人,從乙班2名80分以下的學(xué)員中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆北京市海淀區(qū)】如圖,三棱柱側(cè)面底面,

分別為棱的中點.

Ⅰ)求證: ;

Ⅱ)求三棱柱的體積;

Ⅲ)在直線上是否存在一點,使得平面?若存在,求出的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

(1)若,且函數(shù)的圖象是函數(shù)圖象的一條切線,求實數(shù)的值;

(2)若不等式對任意恒成立,求實數(shù)的取值范圍;

(3)若對任意實數(shù),函數(shù)上總有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市31日至14日的空氣質(zhì)量指數(shù)趨勢圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇31日至313日中的某一天到達該市,并停留2天.

Ⅰ)求31日到14日空氣質(zhì)量指數(shù)的中位數(shù);

Ⅱ)求此人到達當(dāng)日空氣重度污染的概率;

Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為100的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各50人;男性60人,女性40人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯誤的是( )

A. 是否傾向選擇生育二胎與戶籍有關(guān)

B. 是否傾向選擇生育二胎與性別無關(guān)

C. 傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同

D. 傾向選擇生育二的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

同步練習(xí)冊答案