在數(shù)列{an}中,若a1=2,且對(duì)任意的正整數(shù)p和q都有ap+q=ap+aq,則a8的值為
 
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由題意在已知等式中取p=n,q=1,可得數(shù)列{an}為等差數(shù)列,由等差數(shù)列的通項(xiàng)公式得答案.
解答: 解:對(duì)于數(shù)列{an},對(duì)任意的正整數(shù)p和q都有ap+q=ap+aq
取p=n,q=1,得:an+1=an+a1
∴an+1-an=a1=2,
∴數(shù)列{an}是以2為首項(xiàng),以2為公差的等差數(shù)列,
則a8=a1+7d=2+7×2=16.
故答案為:16.
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了等差關(guān)系的確定,想到對(duì)p,q取特值n,1是解答此題的關(guān)鍵,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果數(shù)列{an}同時(shí)滿足:(1)各項(xiàng)均不為0,(2)存在常數(shù)k,對(duì)任意n∈N*,an+12anan+2+k都成立,則稱這樣的數(shù)列{an}為“類等比數(shù)列”.由此等比數(shù)列必定是“類等比數(shù)列”.問:
(1)各項(xiàng)均不為0的等差數(shù)列{bn}是否為“類等比數(shù)列”?說明理由.
(2)若數(shù)列{an}為“類等比數(shù)列”,且a1=a,a2=b(a,b為常數(shù)),是否存在常數(shù)λ,使得an+an+2=λan+1對(duì)任意n∈N*都成立?若存在,求出λ;若不存在,請(qǐng)舉出反例.
(3)若數(shù)列{an}為“類等比數(shù)列”,且a1=a,a2=b,k=a2+b2(a,b為常數(shù)),求數(shù)列{an}的前n項(xiàng)之和Sn;數(shù)列{Sn}的前n項(xiàng)之和記為Tn,求T4k-3(k∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察等式:
sin50°+sin20°=2sin35°cos15°
sin66°+sin32°=2sin49°cos17°
猜想符合以上兩式規(guī)律的一般結(jié)論,并進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班50位同學(xué),期中考試成績(jī)?nèi)柯湓赱90,150]上,將成績(jī)分成6組:[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],加以統(tǒng)計(jì),得到如圖所示的部分頻率分布直方圖.
(Ⅰ)求成績(jī)?cè)赱110,120)上的學(xué)生人數(shù),并將頻率分布直方圖補(bǔ)充完整;
(Ⅱ)從成績(jī)不低于130的學(xué)生中隨機(jī)抽取兩名,求至少一名學(xué)生的成績(jī)不低于140的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

讀如圖所示的程序框圖,若輸入的值為-5,則輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
1,x>0
0,x=0
-1,x<0
,若函數(shù)f(x)=2x•g(lnx)+1-x2,則該函數(shù)的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某公司10個(gè)銷售店某月銷售某品牌電腦數(shù)量(單位:臺(tái))的莖葉圖,則數(shù)
落在區(qū)間[19,30)內(nèi)的頻率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心在第一象限的圓C經(jīng)過坐標(biāo)原點(diǎn)O,與x軸的正半軸交于另一個(gè)點(diǎn)A,且∠OCA=120°,該圓截x軸所得弦長(zhǎng)為2
3
,則圓C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),命題:
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn);
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn);
③如果k與b都是有理數(shù),則直線y=kx+b必經(jīng)過無窮多個(gè)整點(diǎn);
④如果直線l經(jīng)過兩個(gè)不同的整點(diǎn),則l必經(jīng)過無窮多個(gè)整點(diǎn);
⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線;
其中的真命題是
 
(寫出所有真命題編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案