如圖,在棱長為1的正方體ABCD-A1B1C1D1中,MN分別是A1B1BB1的中點,那么直線AMCN所成角的余弦值為________.
D為坐標原點,DAx軸,DCy軸,DD1z軸建立空間直角坐標系,則A(1,0,0),MC(0,1,0),N.則,
∴cos〈〉=.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

平行四邊形中,為折線,把折起,使平面平面,連接

(1)求證:
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,平面PAC⊥平面ABCD,且PAAC,PAAD=2.四邊形ABCD滿足BCAD,ABADABBC=1.點E,F分別為側(cè)棱PB,PC上的點,且λ.

(1)求證:EF∥平面PAD.
(2)當λ時,求異面直線BFCD所成角的余弦值;
(3)是否存在實數(shù)λ,使得平面AFD⊥平面PCD?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐的底面是正方形,底面,上的任意一點.

(1)求證:平面平面
(2)當時,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.

(Ⅰ)求異面直線EF與BC所成角的大;
(Ⅱ)若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.

(1) 證明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,,分別是平面的法向量,則平面的位置關系式(   )
A.平行B.垂直
C.所成的二面角為銳角 D.所成的二面角為鈍角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點,作交PB于點F.
(1)證明 平面;
(2)證明平面EFD;
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

反向的單位向量,則的坐標為             

查看答案和解析>>

同步練習冊答案