【題目】已知拋物線P的焦點(diǎn)為F,經(jīng)過點(diǎn)作直線與拋物線P相交于AB兩點(diǎn),設(shè)

1)求的值;

2)是否存在常數(shù)a,當(dāng)點(diǎn)M在拋物線P上運(yùn)動(dòng)時(shí),直線都與以MF為直徑的圓相切?若存在,求出所有a的值;若不存在,請說明理由.

【答案】1;(2)存在,0.

【解析】

1)設(shè)出直線方程,聯(lián)立直線與拋物線方程,由韋達(dá)定理即可得出結(jié)論;

2)設(shè)點(diǎn),求出以MF為直徑的圓的圓心與半徑,根據(jù)直線與圓相切得圓心到切線的距離等于半徑得恒成立,從而求出a的值.

1)法一:依題意過點(diǎn)的直線可設(shè)為,

,得,

設(shè),則,

;

2)存在.

F是拋物線P的焦點(diǎn),∴

設(shè),則MF的中點(diǎn)為,

∵直線與以MF為直徑的圓相切的充要條件是到直線的距離等于,即,

∵對于拋物線P上的任意一點(diǎn)M,直線都與以MF為直徑的圓相切,

∴關(guān)于x的方程對任意的都要成立.

解得

∴存在常數(shù)a,并且僅有滿足當(dāng)點(diǎn)M在拋物線P上運(yùn)動(dòng)時(shí),直線都與以MF為直徑的圓相切

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)(其中):①若函數(shù)的一個(gè)對稱中心到與它最近一條對稱軸的距離為,則;②若函數(shù)上單調(diào)遞增,則的范圍為;③若,則在點(diǎn)處的切線方程為 ;④若,則的最小值為;⑤若,則函數(shù)的圖象向右平移個(gè)單位可以得到函數(shù)的圖象.其中正確命題的序號有_______.(把你認(rèn)為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,,,且的最小值為-2,的圖象的相鄰兩條對稱軸之間的距離為,的圖象過點(diǎn).

1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;

2)若函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體有8個(gè)不同頂點(diǎn),現(xiàn)任意選擇其中4個(gè)不同頂點(diǎn),然后將它們兩兩相連,可組成平面圖形成空間幾何體.在組成的空間幾何體中,可以是下列空間幾何體中的________.(寫出所有正確結(jié)論的編號)

①每個(gè)面都是直角三角形的四面體;

②每個(gè)面都是等邊三角形的四面體;

③每個(gè)面都是全等的直角三角形的四面體;

④有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)各選一匹進(jìn)行一場比賽,若有優(yōu)勢的馬一定獲勝,則齊王的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�