已知集合A={x|-2<x≤5},B={x|-m+1≤x≤2m-1}且B⊆A,求實(shí)數(shù)m的取值范圍.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:根據(jù)題意需討論B=∅,和B≠∅兩種情況,根據(jù)子集的概念限制m的取值從而得到實(shí)數(shù)m的取值范圍.
解答: 解:①若B≠∅,∵B⊆A;
-m+1≤2m-1
-m+1>-2
2m-1≤5
,解得
2
3
≤m<3
;
②若B=∅,滿足B⊆A,則:
-m+1>2m-1;
m<
2
3
;
∴實(shí)數(shù)m的取值范圍為:(-∞,3).
點(diǎn)評(píng):考查空集、子集的概念,空集和所有集合的關(guān)系,可借用數(shù)軸求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,
m
=(a+b,a+c),
n
=(c,b-a),
m
n

(1)求B;    
(2)若a+c=8,b=7,求△ABC的面積;
(3)若sinAsinC=
3
-1
4
,求C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+y2-2mx-4y+5m=0的曲線是圓C
(1)求m的取值范圍;
(2)當(dāng)m=-2時(shí),求圓C截直線l:2x-y+1=0所得弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(1,2),
b
=(x,1),如果向量
a
+2
b
與2
a
-
b
平行,那么
a
•(
a
-
b
)等于( 。
A、-2
B、-1
C、
3
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=1,a2=3,數(shù)列{
1
anan+1
}的前n項(xiàng)和為
15
31
,則n的值為( 。
A、15B、16C、17D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+1,g(x)=sinx
(1)求h(x)=
g(x)-1
f(x)-2
,x∈(0,
π
6
)的值域
(2)若x∈[0,
π
2
]時(shí),h(x)=f(x)-2m2g(x)的最小值為
1
2
,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A(1,-1),B(0,4),C(4,0).
(1)求BC邊上的中線所在的直線方程;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(x-
1
2
4展開式中常數(shù)項(xiàng)為
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

能使兩個(gè)不重合的平面α和平面β平行的一個(gè)充分條件是(  )
A、存在直線a與上述兩平面所成的角相等
B、存在平面γ與上述兩平面所成的二面角相等
C、存在直線a滿足:a∥平面α,且a∥平面β
D、存在平面γ滿足:平面γ∥平面α,且平面γ∥平面β

查看答案和解析>>

同步練習(xí)冊(cè)答案