在△ABC中,角A,B,C所對的邊分別為a,b,c,S表示△ABC的面積,若acosB+bcosA=csinC,S=(b2+c2-a2),則∠B=( )
A.90°
B.60°
C.45°
D.30°
【答案】分析:先利用正弦定理把題設(shè)等式中的邊轉(zhuǎn)化成角的正弦,化簡整理求得sinC的值,進而求得C,然后利用三角形面積公式求得S的表達式,進而求得a=b,推斷出三角形為等腰直角三角形,進而求得∠B.
解答:解:由正弦定理可知acosB+bcosA=2RsinAcosB+2RsinBcosA=2Rsin(A+B)=2RsinC=2RsinC•sinC
∴sinC=1,C=
∴S=ab=(b2+c2-a2),
解得a=b,因此∠B=45°.
故選C
點評:本題主要考查了正弦定理的應(yīng)用.作為解三角形常用的定理,我們應(yīng)熟練記憶和掌握正弦定理公式及其變形公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案