中,已知,若 分別是角所對的邊,則的最大值為 .

 

【解析】

試題分析:由正余弦定理得: ,化簡得因此即最大值為.

考點:正余弦定理,基本不等式

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三5月信息卷理科數(shù)學試卷(解析版) 題型:解答題

某小區(qū)想利用一矩形空地建市民健身廣場,設(shè)計時決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中,,且中,,經(jīng)測量得到.為保證安全同時考慮美觀,健身廣場周圍準備加設(shè)一個保護欄.設(shè)計時經(jīng)過點作一直線交,從而得到五邊形的市民健身廣場,設(shè)

(1)將五邊形的面積表示為的函數(shù);

(2)當為何值時,市民健身廣場的面積最大?并求出最大面積.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二理科數(shù)學試卷(解析版) 題型:解答題

如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.

(1)求證:BF∥平面ACE;

(2)求證:BF⊥BD.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二文科數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列的各項都為正數(shù),。

(1)若數(shù)列是首項為1,公差為的等差數(shù)列,求

(2)若,求證:數(shù)列是等差數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二文科數(shù)學試卷(解析版) 題型:填空題

設(shè)分別是橢圓的上下兩個頂點,為橢圓上任意一點(不與點重合),直線分別交軸于兩點,若橢圓點的切線交軸于點,則

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二文科數(shù)學試卷(解析版) 題型:填空題

設(shè)集合,且,則實數(shù)的取值范圍是 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測三數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)是實數(shù)常數(shù))的圖像上的一個最高點,與該最高點最近的一個最低點是

(1)求函數(shù)的解析式及其單調(diào)增區(qū)間;

(2)在銳角三角形△ABC中,角A、B、C所對的邊分別為,且,角A的取值范圍是區(qū)間M,當時,試求函數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省高三下學期4月周練理科數(shù)學試卷(解析版) 題型:解答題

在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標系點為極點,軸正方向為極軸,且長度單位相同,建立極坐標系,得直線的極坐標方程為.求直線與曲線交點的極坐標.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省徐州市高三第三次質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:解答題

如圖,在直三棱柱中,已知,,

(1)求異面直線夾角的余弦值;

(2)求二面角平面角的余弦值.

 

查看答案和解析>>

同步練習冊答案