(本小題滿分12分)
如圖,正方體中, E是的中點.
(1)求證:∥平面AEC;
(2)求與平面所成的角.
(1)證明:見解析;(2)直線與平面所成的角為.
【解析】
試題分析: (1)作AC的中點F,連接EF,則根據(jù)三角形的中位線證明線線平行,進而得到線面平行的證明。
(2)要利用線面垂直為前提得到斜線的射影,進而得到線面角的大小。
解:(1)證明:連結(jié)BD,交AC于點O,連結(jié)EO.
因為E、O分別是與的中點,
所以OE∥.
又因為OE在平面AEC內(nèi),不在平面AEC內(nèi),
所以∥平面AEC.
(2)因為正方體中,
⊥平面ABCD,所以⊥BD,
又正方形ABCD中,AC⊥BD,
所以BD⊥平面,
所以∠是與平面所成的角.
設正方體棱長為a,中,,
所以,所以,
所以直線與平面所成的角為.
考點:本題主要考查了考查證明線面平行、線面垂直的方法,直線和平面平行的判定,面面垂直的判定,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
點評:解決該試題的關鍵是熟練運用線面平行的判定定理和線面垂直的性質(zhì)定理得到線面角的大小,進而求解到。
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com