偶函數(shù)f(x)(x∈R)滿足:f(-4)=f(1)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減和遞增,則不等式x3f(x)<0的解集為( )
A.(-∞,-4)∪(4,+∞)
B.(-4,-1)∪(1,4)
C.(-∞,-4)∪(-1,0)
D.(-∞,-4)∪(-1,0)∪(1,4)
【答案】分析:利用偶函數(shù)關于y軸對稱的性質并結合題中給出函數(shù)的單調區(qū)間畫出函數(shù)f(x)的圖象,再由x3f(x)<0得到x3與f(x)異號得出結論.
解答:解:∵f(x)是偶函數(shù)
∴f(-x)=f(x)即f(4)=f(-1)=0
又∵f(x)在區(qū)間[0,3]與[3,+∞)上分別遞減和遞增得到圖象如圖:
由圖可知,當x>0時x3>0要x3f(x)<0只需f(x)<0即x∈(1,4)
當x<0時同理可得x∈(-∞,-4)∪(-1,0)故答案選D.
點評:本題考查了利用函數(shù)的奇偶性和單調性做出函數(shù)圖象,并利用數(shù)形結合求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、定義在(-∞,+∞)上的偶函數(shù)f(x)滿足f(x+2)=f(x),當x∈[0,1]時,f(x)=10x-1,下面關于函數(shù)f(x)的判斷:
①當x∈[-1,0]時,f(x)=10-x-1;
②函數(shù)f(x)的圖象關于直線x=1對稱;
③對任意x1,x2∈(1,2),滿足(x2-x1)(f(x2)-f(x1))<0;
④當x∈[2k,2k+1],k∈Z時,f(x)=10x-2k-1.其中正確判斷的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

偶函數(shù)f(x)(x∈R)滿足f(-4)=f(1)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減與遞增,則不等式x•f(x)<0的解集為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當x∈[0,1]時,f(x)=x,則函數(shù)y=f(x)-log3|x|的零點的個數(shù)是
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當x∈[0,1]時,f(x)=x,則函數(shù)y=f(x)-log5|x|的零點個數(shù)有
8
8
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數(shù)列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

同步練習冊答案