已知正三棱柱ABC-A′B′C′(底面為正三角形,側(cè)棱垂直于底面)的正視圖和側(cè)視圖如圖所示.設(shè)△ABC、△A′B′C′的中心為O,O′,現(xiàn)將此三棱柱繞直線OO′旋轉(zhuǎn).射線OA旋轉(zhuǎn)所成的角為x弧度(x可取任一實數(shù),逆時針為正角,順時針為負角).對應(yīng)的俯視圖的面積為S(x),則S(x)的最小正周期和值域分別為( 。
A、
3
,[4,8]
B、
3
,[4
3
,8]
C、
π
3
,[4,8]
D、
π
3
,[4
3
,8]
考點:簡單空間圖形的三視圖
專題:常規(guī)題型,空間位置關(guān)系與距離
分析:由題意判斷俯視圖的圖形的形狀,推出最大值,最小值時的位置,即可求解結(jié)果.
解答: 解:由題意可知,正三棱柱的底面三角形的高為
3
,正三角形的邊長為2,
俯視圖是矩形,當(dāng)此三棱柱繞直線OO′旋轉(zhuǎn),在旋轉(zhuǎn)過程中對應(yīng)的俯視圖,底面正三角形的邊在俯視圖中為矩形的邊長時,俯視圖的面積最大,則S的最大值為:2×4=8.
底面正三角形的高在俯視圖中為矩形的邊長時,俯視圖的面積最小,則S的最小值為:
3
×4=4
3
.則值域為[4
3
,8].
因為正三角形的內(nèi)角均為60°,所以函數(shù)S(x)的最小正周期為
π
3

故選:D.
點評:本題考查三視圖與直觀圖的關(guān)系,解題的關(guān)鍵是判斷俯視圖的圖形的形狀,推出最大值,最小值時的位置.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科)在空間直角坐標系O-xyz中(O為坐標原點),點A(1,0,2)關(guān)于yOz平面對稱的點的坐標是(  )
A、(1,0,-2)
B、(-1,0,-2)
C、(1,0,2)
D、(-1,0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1=
1
2-an
,a1=0,歸納出{an}的一個通項公式為(  )
A、an=
1
n
B、an=
n-1
n
C、an=
n+1
n
D、an=
n
n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

n為整數(shù),若命題p:2n-1是奇數(shù),q:2n+1是偶數(shù),則下列說法中正確的是( 。
A、p∨q為真B、p∧q為真
C、¬p為真D、¬q為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐O-ABC的各邊長都相等,點G為△OBC的重心,以向量
OA
、
OB
、
OC
為基向量,則向量
AG
可以表示為( 。
A、
AG
=
1
3
OA
+
1
3
OB
+
1
3
OC
B、
AG
=-
1
3
OA
+
1
3
OB
+
1
3
OC
C、
AG
=
OA
+
1
3
OB
+
1
3
OC
D、
AG
=-
OA
+
1
3
OB
+
1
3
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,該幾何體的體積是( 。
A、32
B、32
2
C、
32
3
D、
32
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線2x+3y+8=0與直線x-y-1=0的交點坐標是( 。
A、(-2,-1)
B、(1,2)
C、(-1,-2)
D、(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

p:ax2+by2=c為雙曲線,q:ab<0,則p是q的( 。
A、充分非必要條件
B、必要非充分條件
C、既不充分也不必要條件
D、充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinx,cosx),
b
=(sinx,sinx),若x∈[-
8
,
π
4
],函數(shù)f(x)=n
a
b
的最大值是
1
2
,求n的值.

查看答案和解析>>

同步練習(xí)冊答案