已知雙曲線C與雙曲線x2-
y2
2
=1有共同的漸近線,且雙曲線C過(guò)點(diǎn)M(2,2),則過(guò)點(diǎn)A(1,1)能否作直線l,使l與雙曲線C交于Q1、Q2兩點(diǎn),且A是線段Q1Q2的中點(diǎn),這樣的直線l如果存在,求出它的方程;如果不存在,說(shuō)明理由.
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線方程,假設(shè)直線l存在.由已知條件利用點(diǎn)差法求出直線l的方程為2x-y-1=0,y=2x-1代入雙曲線方程,得2x2-4x+5=0,由△<0,推導(dǎo)出直線l不存在.
解答: 解:設(shè)雙曲線方程為x2-
y2
2

代入點(diǎn)M(2,2),得λ=2,
∴雙曲線C的方程為
x2
2
-
y2
4
=1

設(shè)點(diǎn)Q1(x1,y1),Q2(x2,y2),則2x12-y12=4,2x22-y22=4
由點(diǎn)差法作差,利用A是線段Q1Q2的中點(diǎn),代入得k=2                                 
∴直線l的方程為y-1=2(x-1)即y=2x-1            
y=2x-1代入雙曲線方程,得2x2-4x+5=0
∵△=16-4×2×5=-24<0,
∴直線l與雙曲線C無(wú)交點(diǎn),故直線l不存在.
點(diǎn)評(píng):本題考查雙曲線方程、直線方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)差法和根的判別式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面幾個(gè)推理過(guò)程是演繹推理的是(  )
A、某同學(xué)第一次數(shù)學(xué)考試65分,第二次考試68分,由此預(yù)測(cè)其第三次考試71分
B、根據(jù)圓的面積為S=πr2,推測(cè)球的體積為V=πr3
C、在數(shù)列{an}中,根據(jù)a1=1,an+1=
an
an+1
,n∈N*,計(jì)算出a2,a3,a4的值,然后猜想{an}的通項(xiàng)公式
D、因?yàn)槠叫兴倪呅蔚膶?duì)角線互相平分,而菱形是平行四邊形,所以菱形的對(duì)角線互相平分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=5sin(2x-
π
3
)-3是由y=sinx的圖象經(jīng)過(guò)怎樣的變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3-2log2x,g(x)=log2x
(1)如果x∈[1,2],求函數(shù)h(x)=[f(x)+1]g(x)的值域;
(2)求函數(shù)M(x)=
f(x)+g(x)-|f(x)-g(x)|
2
的最大值.
(3)如果對(duì)任意x∈[1,2],不等式f(x2)f(
x
)>k•g(x)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD,PA⊥平面ABCD,PA=AB=BC=
1
2
AD,四邊形ABCD是直角梯形中,∠ABC=∠BAD=90°.
(1)求證:CD⊥平面PAC;
(2)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空氣質(zhì)量已成為城市居住環(huán)境的一項(xiàng)重要指標(biāo),空氣質(zhì)量的好壞由空氣質(zhì)量指數(shù)確定.空氣質(zhì)量指數(shù)越高,代表空氣污染越嚴(yán)重:
空氣質(zhì)量指數(shù)0~3535~7575~115115~150150~250≥250
空氣質(zhì)量類別優(yōu)輕度污染中度污染重度污染嚴(yán)重污染
經(jīng)過(guò)對(duì)某市空氣質(zhì)量指數(shù)進(jìn)行一個(gè)月(30天)監(jiān)測(cè),獲得數(shù)據(jù)后得到條形圖統(tǒng)計(jì)圖如圖所示:
(Ⅰ)估計(jì)某市一個(gè)月內(nèi)空氣受到污染的概率(規(guī)定:空氣質(zhì)量指數(shù)大于或等于75,空氣受到污染);
(Ⅱ)在空氣質(zhì)量類別為“良”、“輕度污染”、“中度污染”的監(jiān)測(cè)數(shù)據(jù)中用分層抽樣方法抽取一個(gè)容量為6的樣本,若在這6數(shù)據(jù)中任取2個(gè)數(shù)據(jù),求這2個(gè)數(shù)據(jù)所對(duì)應(yīng)的空氣質(zhì)量類別不都是輕度污染的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)參加科普知識(shí)競(jìng)賽需回答3個(gè)問(wèn)題,競(jìng)賽規(guī)則規(guī)定:答對(duì)第1、2、3個(gè)問(wèn)題分別得100分、100分、200分,答錯(cuò)得零分.假設(shè)這名同學(xué)答對(duì)第1、2、3個(gè)問(wèn)題的概率分別為0.8、0.7、0.6,且各題答對(duì)與否相互之間沒有影響.
(1)求這名同學(xué)得200分的概率;
(2)如果規(guī)定至少得300分則算通過(guò),求某同學(xué)能通過(guò)競(jìng)賽的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一點(diǎn).
(Ⅰ)若AD=3OD,求證:CD∥平面PBO;
(Ⅱ)求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某兩個(gè)變量x和y之間的關(guān)系如下對(duì)應(yīng)的數(shù)據(jù):(精確到0.1)
x 3 5 6 7 9
y 2 3 3 4 5
(1)畫出散點(diǎn)圖;          
(2)求出回歸方程;        
(3)若x=18,估計(jì)y的值.
參考公式:回歸直線的方程是:
y
=bx+a,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x
;對(duì)應(yīng)的回歸估計(jì)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案