如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一點(diǎn).
(Ⅰ)若AD=3OD,求證:CD∥平面PBO;
(Ⅱ)求證:平面PAB⊥平面PCD.
考點(diǎn):平面與平面垂直的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)由AD=3BC,AD=3OD,推斷出OD=BC,又OD∥BC,可知四邊形BCDO為平行四邊形,推斷出CD∥BO,根據(jù)線面平行的判定定理證明出CD∥平面PBO.
(Ⅱ)由側(cè)面PAD⊥底面ABCD,AB?底面ABCD,AB⊥AD,推斷出AB⊥平面PAD,根據(jù)線面垂直的性質(zhì)知AB⊥PD,進(jìn)而根據(jù)線面垂直的判定定理可知PD⊥平面PAB,進(jìn)而根據(jù)面面垂直的判定定理推斷出平面PAB⊥平面PCD.
解答: 證明:(Ⅰ)∵AD=3BC,AD=3OD,
∴OD=BC,
∵OD∥BC,
∴四邊形BCDO為平行四邊形,
∴CD∥BO,又BO?平面PBO,CD?平面PBO,
∴CD∥平面PBO.
(Ⅱ)∵側(cè)面PAD⊥底面ABCD,AB?底面ABCD,AB⊥AD,
∴AB⊥平面PAD,
∵PD?平面PAD,
∴AB⊥PD,
又PA⊥PD,且PA?平面PAB,AB?平面PAB,AB∩PA=A,
∴PD⊥平面PAB,
∵PD?平面PCD,
∴平面PAB⊥平面PCD.
點(diǎn)評:本題主要考查了線面垂直,面面垂直的判定定理及性質(zhì).證明面面垂直的關(guān)鍵是找到平面中與另一平面垂直的直線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E經(jīng)過點(diǎn)A(2,3),對稱軸為坐標(biāo)軸,焦點(diǎn)F1,F(xiàn)2在X軸上,離心率e=
1
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的右頂點(diǎn)為B,直線l過左焦點(diǎn)F1且垂直于X軸,交橢圓于M、N兩點(diǎn),求△BMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C與雙曲線x2-
y2
2
=1有共同的漸近線,且雙曲線C過點(diǎn)M(2,2),則過點(diǎn)A(1,1)能否作直線l,使l與雙曲線C交于Q1、Q2兩點(diǎn),且A是線段Q1Q2的中點(diǎn),這樣的直線l如果存在,求出它的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=ax2+2x-3
(1)當(dāng)a=1時(shí),求f(x)在[-2,2]之間的取值范圍.
(2)若f(x)在區(qū)間(-∞,4)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是邊長為2的正方形,△ABE為等腰三角形,AE=BE,平面ABCD⊥平面ABE,動(dòng)點(diǎn)F在CE上,無論點(diǎn)F運(yùn)動(dòng)到何處時(shí),總有BF⊥AE.
(Ⅰ)求證:平面ADE⊥平面BCE;
(Ⅱ)求三校錐的D-ACE體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=
1
2
(1-an)

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=nSn,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=
π
2
,AB=AD=PD=1,CD=2.設(shè)Q為側(cè)棱PC上一點(diǎn),
PQ
PC
,試確定λ的值,使得二面角Q-BD-P為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log5
1+x
1-x

(1)求f(x)的定義域;
(2)證明f(x)在定義域內(nèi)是單調(diào)遞增函數(shù);
(3)解不等式:f(x)<f(1-x).(提示:若ab(或
a
b
)>0,則有
a>0
b>0
a<0
b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人玩數(shù)學(xué)游戲,先由甲心中任想一個(gè)數(shù)字記為a,再由乙猜甲剛才想的數(shù)學(xué),把乙猜的數(shù)字記為b,且a,b∈{3,4.5,6},若|a-b|≤1,則稱甲乙“心有靈犀”,現(xiàn)任意找兩人玩這個(gè)游戲,得出他們“心有靈犀”的概率為
 

查看答案和解析>>

同步練習(xí)冊答案