【題目】已知二次函數(shù)滿足①對于任意,都有;②;③的圖像與軸的兩個交點之間的距離為4.

1)求的解析式;

2)記

①若為單調(diào)函數(shù),求的取值范圍;

②記的最小值為,討論函數(shù)零點的個數(shù).

【答案】12)①②詳見解析

【解析】

1)根據(jù)條件可知二次函數(shù)對稱軸,的圖像與軸的兩個交點之間的距離為4可求出交點,利用交點式求函數(shù)解析式(2)①寫出二次函數(shù),根據(jù)對稱軸與區(qū)間關(guān)系可求出的取值范圍②分類討論求出函數(shù)的最小值,換元后作出函數(shù)圖象,再利用數(shù)形結(jié)合研究函數(shù)的零點,注意分類討論思想在解題中的應(yīng)用.

1)因為二次函數(shù)中,

所以對稱軸

的圖像與軸的兩個交點之間的距離為4,

所以與軸交點為

設(shè),

所以

.

2)① ,

對稱軸為,

因為為單調(diào)函數(shù),

所以

解得.

的取值范圍是.

,

對稱軸為,

當(dāng),即時,,

當(dāng),即時,,

當(dāng),即時,

綜上

函數(shù)零點即為方程的根,

,即的根,

作出的簡圖如圖所示:

i)當(dāng)時,,

解得,有3個零點.

ii)當(dāng)時,有唯一解,解得,有2個零點.

iii)當(dāng)時,有兩個不同的解,

解得,有4個零點.

iv)當(dāng)時,,,解得,有2個零點.

v)當(dāng)時,無解,無零點.

綜上:當(dāng)時,無零點;

當(dāng)時,4個零點;

當(dāng)時,有3個零點;

當(dāng)時,有2個零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汕頭某家電企業(yè)要將剛剛生產(chǎn)的100臺變頻空調(diào)送往市內(nèi)某商場,現(xiàn)有4輛甲型貨車和8輛乙型貨車可供調(diào)配,每輛甲型貨車的運輸費用是400元,可裝空調(diào)20臺,每輛乙型貨車的運輸費用是300元,可裝空調(diào)10臺,若每輛車至多運一次,則企業(yè)所花的最少運費為(

A. 2000B. 2200C. 2400D. 2800

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司生產(chǎn)某款手機的年固定成本為40萬元,每生產(chǎn)1萬只還需另投入16萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機萬只并全部銷售完,每萬只的銷售收入為萬元,且

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬只)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬只時,該公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知=(2asin2x,a),=(-1,2 sinxcosx+1),O為坐標(biāo)原點,a≠0,設(shè)f(x)=+b,b>a. (1)若a>0,寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;

(2)若函數(shù)y=f(x)的定義域為[ ,π],值域為[2,5],求實數(shù)a與b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù)

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型超市在2018年元旦舉辦了一次抽獎活動,抽獎箱里放有2個紅球,1個黃球和1個藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機一次性取2個小球,每位顧客每次抽完獎后將球放回抽獎箱.活動另附說明如下:

①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎機會;

②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎機會;

③若取得的2個小球都是紅球,則該顧客中得一等獎,獎金是一個10元的紅包;

④若取得的2個小球都不是紅球,則該顧客中得二等獎,獎金是一個5元的紅包;

⑤若取得的2個小球只有1個紅球,則該顧客中得三等獎,獎金是一個2元的紅包.

抽獎活動的組織者記錄了該超市前20位顧客的購物消費數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.

(1)求這20位顧客中獲得抽獎機會的人數(shù)與抽獎總次數(shù)(假定每位獲得抽獎機會的顧客都會去抽獎);

(2)求這20位顧客中獎得抽獎機會的顧客的購物消費數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);

(3)分別求在一次抽獎中獲得紅包獎金10元,5元,2元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|0},B{x|x23x+20},UR,求

1AB;

2AB

3)(UAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處切線與直線垂直.

(1)試比較的大小,并說明理由;

(2)若函數(shù)有兩個不同的零點,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的一個內(nèi)角為,并且三邊長構(gòu)成公差為4的等差數(shù)列,則的面積為( )

A. 15 B. C. D.

查看答案和解析>>

同步練習(xí)冊答案