【題目】已知集合A={x|0},B={x|x2﹣3x+2<0},U=R,求
(1)A∩B;
(2)A∪B;
(3)(UA)∩B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量, .
(1)若分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6),先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率;
(2)若在連續(xù)區(qū)間上取值,求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,其左、右焦點(diǎn)分別為,上頂點(diǎn)為,為坐標(biāo)原點(diǎn),過的直線交橢圓于兩點(diǎn),.
(1)若直線垂直于軸,求的值;
(2)若,直線的斜率為,則橢圓上是否存在一點(diǎn),使得關(guān)于直線成軸對(duì)稱?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)設(shè)直線:上總存在點(diǎn)滿足,當(dāng)的取值最小時(shí),求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足①對(duì)于任意,都有;②;③的圖像與軸的兩個(gè)交點(diǎn)之間的距離為4.
(1)求的解析式;
(2)記
①若為單調(diào)函數(shù),求的取值范圍;
②記的最小值為,討論函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)具有以下性質(zhì):在上是減函數(shù),在上是增函數(shù).
(1)若在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若,,求的值域和單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,且,,分別為,的中點(diǎn).
(1)證明:平面;
(2)若直線與平面所成的角的大小為,求銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義在上的函數(shù),若存在距離為的兩條直線和,使得對(duì)任意都有恒成立,則稱函數(shù)有一個(gè)寬度為的通道.給出下列函數(shù):
①; ②; ③; ④.
其中在區(qū)間上有一個(gè)通道寬度為的函數(shù)是__________(寫出所有正確的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,為自然對(duì)數(shù)的底數(shù)),若對(duì)于恒成立.
(1)求實(shí)數(shù)的值;
(2)證明:存在唯一極大值點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解七班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合 | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程);
(2)能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為,求的分布列與期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05[ | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.70 | 3.841 | 5.024 | 6.635 | 7.879 | 10.82 |
(參考公式:,其中)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com