(本題滿分12分)

某種項(xiàng)目的射擊比賽,開始時(shí)選手在距離目標(biāo)100m處射擊,若命中則記3分,且停止射擊.若第一次射擊未命中,可以進(jìn)行第二次射擊,但需在距離目標(biāo)150m處,這時(shí)命中目標(biāo)記2分,且停止射擊.若第二次仍未命中,還可以進(jìn)行第三次射擊,此時(shí)需在距離目標(biāo)200m處,若第三次命中則記1分,并停止射擊.若三次都未命中則記0分,并停止射擊.已知選手甲的命中率與目標(biāo)的距離的平方成反比,他在100m處擊中目標(biāo)的概率為,且各次射擊都相互獨(dú)立.

(Ⅰ)求選手甲在三次射擊中命中目標(biāo)的概率;

(Ⅱ)設(shè)選手甲在比賽中的得分為,求的分布列和數(shù)學(xué)期望.   

 

 

 

解:記選手甲第一、二、三次射擊命中目標(biāo)分別為事件、、,三次均未擊中目標(biāo)為事件,則

設(shè)選手甲在m處擊中目標(biāo)的概率為,則.由m時(shí),得,∴,

.  ……4分

(Ⅰ)由于各次射擊都是相互獨(dú)立的,所以選手甲在三次射擊中擊中目標(biāo)的概率為.                    ……7分

(Ⅱ)由題設(shè)知,的可取值為

,

的分布列為

0

1

2

3

數(shù)學(xué)期望為.                                       ……12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大。

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案