求函數(shù)f(x)=2x3+3x2-12x+14的在[-3,4]上的最大值與最小值.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專(zhuān)題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,可得函數(shù)的極值與端點(diǎn)函數(shù)值比較,即可得到結(jié)論.
解答: 解:由題可得f′(x)=6x2+6x-12=0,
令f′(x)=0,解得x=1,-2,
∴函數(shù)在(-3,-2),(1,4)上單調(diào)遞增,在(-2,1)上單調(diào)遞減,
又f(-3)=20,f(-2)=34,f(1)=7,f(4)=142,
∴函數(shù)f(x)=2x3+3x2-12x+14的在[-3,4]上的最大值為142,最小值7.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的最值,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,已知tanA=-
5
12
,則cos(
3
2
π+A)-sin(
7
2
π-A)的值為( 。
A、
7
13
B、-
7
13
C、
17
13
D、-
17
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
3
ax3+(a-1)bx2-2x+1,a∈R.
(1)當(dāng)b=1時(shí),討論函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a=2且函數(shù)y=f(x)在(1,2)上存在增區(qū)間,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知圓O:x2+y2=1與x軸交于A、B兩點(diǎn),與y軸的正半軸交于點(diǎn)C,M是圓O上任意點(diǎn)(除去圓O與兩坐標(biāo)軸的交點(diǎn)).直線(xiàn)AM與直線(xiàn)BC交于點(diǎn)P,直線(xiàn)CM與x軸交于點(diǎn)N,設(shè)直線(xiàn)PM、PN的斜率分別為m、n.
(Ⅰ)求直線(xiàn)BC的方程;
(Ⅱ)求點(diǎn)P、M的坐標(biāo)(用m表示);
(Ⅲ)是否存在一個(gè)實(shí)數(shù)λ,使得m+λn為定值,若存在求出λ,并求出這個(gè)定值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓半徑r=3,圓心在二次函數(shù)y=-(x+2)2的圖象上,直線(xiàn)y=x+2被這個(gè)圓截得的弦長(zhǎng)為2
7
,求這個(gè)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+ax-
1
4
a-
1
2
,
(1)若函數(shù)f(x)的值域?yàn)椋?∞,0],求實(shí)數(shù)a的值;
(2)當(dāng)x∈[0,1]時(shí),函數(shù)f(x)的最大值為2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=
x
(x-a).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求平方值小于1000的最大正整數(shù),寫(xiě)出一個(gè)算法的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知a1=2,且對(duì)任意的正整數(shù)n,m,都有an+m=an+am
(Ⅰ)求出a2,a3,a4;
(Ⅱ)猜想數(shù)列{an}的通項(xiàng)公式an,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案