在x(1+x)6的展開式中,含x3項的系數(shù)為( 。
A、30B、20C、15D、10
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:利用二項展開式的通項公式求出(1+x)6的第r+1項,令x的指數(shù)為2求出展開式中x2的系數(shù).然后求解即可.
解答: 解:(1+x)6展開式中通項Tr+1=C6rxr,
令r=2可得,T3=C62x2=15x2,
∴(1+x)6展開式中x2項的系數(shù)為15,
在x(1+x)6的展開式中,含x3項的系數(shù)為:15.
故選:C.
點評:本題考查二項展開式的通項的簡單直接應用.牢記公式是基礎,計算準確是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在等腰直角三角形ABC中,斜邊BC=2
2
,過點A作BC的垂線,垂足為A1,過點A1作AC的垂線,垂足為A2,過點A2作A1C的垂線,垂足為A3…,依此類推,設BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,則a7=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
,
b
滿足|
a
+
b
|=
10
,|
a
-
b
|=
6
,則
a
b
=(  )
A、1B、2C、3D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足約束條件
x-y-1≤0
2x-y-3≥0
,當目標函數(shù)z=ax+by(a>0,b>0)在該約束條件下取到最小值2
5
時,a2+b2的最小值為(  )
A、5
B、4
C、
5
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了研究某藥品的療效,選取若干名志愿者進行臨床試驗.所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,…,第五組.如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為(  )
A、6B、8C、12D、18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是(  )
A、22B、16C、15D、11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2sinx,則函數(shù)f(x)的圖象可能為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=alnx(a∈R),曲線y=f(x)在點(1,f(1))處的切線方程為y=x+b(b∈R).
(1)求a、b的值;
(2)設集合A=[1,+∞),集合B={x|f(x)-m(x-
1
x
)≤0},若A⊆B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,C、D是兩個小區(qū)所在地,C、D到一條公路AB的垂直距離分別為CA=1km,DB=2km,A、B間的距離為3km,某公交公司要在A、B之間的某點N處建造一個公交站點,使得N對C、D兩個小區(qū)的視角∠CND最大,則N處與A處的距離為
 
km.

查看答案和解析>>

同步練習冊答案