如圖,在平行四邊形ABCD中,O是對角線AC、BD的交點,N是線段OD的中點,AN的延長線于CD交于點E,則下列說法錯誤的是( 。
A、
AC
=
AB
+
AD
B、
BD
=
AD
-
AB
C、
AO
=
1
2
AB
+
1
2
AD
D、
AE
=
1
4
AB
+
AD
考點:向量加減混合運算及其幾何意義
專題:平面向量及應(yīng)用
分析:由平行四邊形的性質(zhì)可得:△ABN~△DNE,
DE
AB
=
DN
BN
=
1
3
,再利用向量的三角形法則即可得出.
解答: 解:由平行四邊形ABCD可得:△ABN~△DNE,
DE
AB
=
DN
BN
=
1
3

AE
=
AD
+
DE
=
1
3
AB
+
AD
,
因此D不正確.
故選:D.
點評:本題考查了平行四邊形的性質(zhì)、向量的三角形法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(x-3y)n展開式中,第5項的二項式系數(shù)與第12項的二項式系數(shù)相等,則展開式共有( 。
A、15項B、16項
C、17項D、18項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連擲兩次骰子得到的點數(shù)分別為m,n,記
a
=(m,n),
b
=(1,-1),
a
b
的夾角為θ,θ∈(0,
π
2
]的概率為( 。
A、
1
6
B、
7
12
C、
1
12
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cosxcos(x-
π
4
)的最小正周期是(  )
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|log3x|,正實數(shù)m,n滿足m<n,且f(m)=f(n),若f(x)在區(qū)間[m,n2]上的最大值為2,則m+n=( 。
A、
82
9
B、
28
9
C、
28
3
D、
10
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=lnx-lna,g(x)=aex,其中a為常數(shù),函數(shù)y=f(x)和y=g(x)的圖象在它們與坐標(biāo)軸交點處的切線互相平行.
(1)求函數(shù)F(x)=f(x)-g(x-1)的單調(diào)區(qū)間;
(2)若不等式xf(x)-k(x+1)f[g(x-1)]≤0在區(qū)間[1,+∞)上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32=9a2a6,設(shè)bn=log
1
3
an,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè){bn}的前n項和為Sn,求數(shù)列{
1
Sn
}(n∈N*)的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,動圓D過定點A(0,2),圓心D在拋物線x2=4y上運動,MN為圓D在x軸上截得的弦,當(dāng)圓心D運動時,記|AM|=m,|AN|=n.
(Ⅰ)求證:|MN|為定值;
(Ⅱ)求
n
m
+
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊長,若a2+b2-c2=absin2C
(1)求角C;
(2)若c-a=2,
AB
AC
=36,求sinA+sinB-sinC.

查看答案和解析>>

同步練習(xí)冊答案